24edf: Difference between revisions
Jump to navigation
Jump to search
m stub mbox, correct linking, add harmonics, make table collapsible |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
24edf is related to [[41edo]], but with the 3/2 rather than the [[2/1]] being just. The octave is about 0.8269 cents compressed. Like 41edo, 24edf is [[consistent]] to the [[integer limit|16-integer-limit]]. | |||
== Harmonics == | === Harmonics === | ||
{{Harmonics in equal|24|3|2|intervals= | {{Harmonics in equal|24|3|2|intervals=integer}} | ||
{{Harmonics in equal|24|3|2|start=12|collapsed= | {{Harmonics in equal|24|3|2|intervals=integer|columns=12|start=12|collapsed=true|Approximation of harmonics in 65edt (continued)}} | ||
=== Subsets and supersets === | |||
24edt is the 6th [[highly composite equal division|highly composite edt]]. Its nontrivial subsets are {{EDs|equave=t| 2, 3, 4, 6, 8, and 12 }}. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable | {| class="wikitable center-1 right-2" | ||
|+ Intervals of 24edf | |+ Intervals of 24edf | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| | | 0 | ||
| 0.0 | |||
| [[1/1]] | |||
|- | |- | ||
| 1 | |||
| 29.2 | |||
| | | [[49/48]], [[50/49]], [[64/63]], [[81/80]] | ||
|- | |- | ||
| 2 | |||
| 58.5 | |||
| [[25/24]], [[28/27]], [[33/32]], [[36/35]] | |||
|- | |- | ||
| 3 | |||
| 87.7 | |||
| | | [[19/18]], [[20/19]], [[21/20]], [[22/21]] | ||
|- | |- | ||
| 4 | |||
| | | 117.0 | ||
| [[14/13]], [[15/14]], [[16/15]] | |||
|- | |- | ||
| 5 | |||
| 146.2 | |||
| [[12/11]], [[13/12]] | |||
|- | |- | ||
| 6 | |||
| 175.5 | |||
| [[10/9]], [[11/10]], [[21/19]] | |||
|- | |- | ||
| 7 | |||
| 204.7 | |||
| [[9/8]] | |||
|- | |- | ||
| 8 | |||
| | | 234.0 | ||
| [[8/7]], [[15/13]] | |||
|- | |- | ||
| 9 | |||
| 263.2 | |||
| [[7/6]], [[22/19]] | |||
|- | |- | ||
| 10 | |||
| 292.5 | |||
| | | [[13/11]], [[19/16]], [[32/27]] | ||
|- | |- | ||
| 11 | |||
| 321.7 | |||
| [[6/5]] | |||
|- | |- | ||
| 12 | |||
| | | 351.0 | ||
| [[11/9]], [[16/13]] | |||
|- | |- | ||
| 13 | |||
| 380.2 | |||
| [[5/4]], [[26/21]] | |||
|- | |- | ||
| 14 | |||
| 409.5 | |||
| [[14/11]], [[19/15]], [[24/19]] | |||
|- | |- | ||
| 15 | |||
| 438.7 | |||
| [[9/7]], [[32/25]] | |||
|- | |- | ||
| 16 | |||
| | | 468.0 | ||
| [[21/16]], [[13/10]] | |||
|- | |- | ||
| 17 | |||
| 497.2 | |||
| [[4/3]] | |||
|- | |- | ||
| 18 | |||
| 526.5 | |||
| [[15/11]], [[19/14]], [[27/20]] | |||
|- | |- | ||
| 19 | |||
| 556.7 | |||
| [[11/8]], [[18/13]], [[26/19]] | |||
|- | |- | ||
| 20 | |||
| | | 585.0 | ||
| [[7/5]], [[45/32]] | |||
|- | |- | ||
| 21 | |||
| 614.2 | |||
| [[10/7]], [[64/45]] | |||
|- | |- | ||
| 22 | |||
| 643.5 | |||
| | | [[13/9]], [[16/11]], [[19/13]] | ||
|- | |- | ||
| 23 | |||
| 671.7 | |||
| [[22/15]], [[28/19]], [[40/27]] | |||
|- | |- | ||
| 24 | |||
| | | 702.0 | ||
| [[3/2]] | |||
|- | |- | ||
| 25 | |||
| 731.2 | |||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
| 26 | |||
| 760.5 | |||
| [[14/9]], [[25/16]] | |||
|- | |- | ||
| 27 | |||
| 789.7 | |||
| [[11/7]], [[19/12]], [[30/19]] | |||
|- | |- | ||
| 28 | |||
| 818.9 | |||
| [[8/5]] | |||
|- | |- | ||
| 29 | |||
| 848.2 | |||
| [[13/8]], [[18/11]] | |||
|- | |- | ||
| 30 | |||
| 877.4 | |||
| [[5/3]] | |||
|- | |- | ||
| 31 | |||
| 906.7 | |||
| | | [[22/13]], [[27/16]], [[32/19]] | ||
|- | |- | ||
| 32 | |||
| 935.9 | |||
| [[12/7]], [[19/11]] | |||
|- | |- | ||
| 33 | |||
| 965.2 | |||
| [[7/4]], [[26/15]] | |||
|- | |- | ||
| 34 | |||
| 994.4 | |||
| [[16/9]] | |||
|- | |- | ||
| 35 | |||
| 1023.7 | |||
| [[9/5]] | |||
|- | |- | ||
| 36 | |||
| 1052.9 | |||
| [[11/6]] | |||
|- | |- | ||
| 37 | |||
| 1082.2 | |||
| | | [[13/7]], [[15/8]] | ||
|- | |- | ||
| 38 | |||
| 1111.4 | |||
| [[19/10]], [[21/11]] | |||
|- | |- | ||
| 39 | |||
| 1140.7 | |||
| | | [[27/14]], [[35/18]] | ||
|- | |- | ||
| 40 | |||
| 1169.9 | |||
| | | [[49/25]], [[56/28]], [[63/32]] | ||
|- | |- | ||
| 41 | |||
| 1199.2 | |||
| 2/1 | |||
|- | |- | ||
|42 | | 42 | ||
|1228. | | 1228.4 | ||
|81/40 | | [[45/22]], [[49/24]], [[55/27]], [[81/40]] | ||
|- | |- | ||
|43 | | 43 | ||
|1257. | | 1257.7 | ||
|25/12, | | [[25/12]], [[33/16]] | ||
|- | |- | ||
|44 | | 44 | ||
|1286. | | 1286.9 | ||
|21/10 | | [[19/9]], [[21/10]] | ||
|- | |- | ||
|45 | | 45 | ||
|1316. | | 1316.2 | ||
| | | [[15/7]] | ||
|- | |- | ||
|46 | | 46 | ||
|1345. | | 1345.4 | ||
| | | [[13/6]] | ||
|- | |- | ||
|47 | | 47 | ||
|1374. | | 1374.7 | ||
| | | [[11/5]] | ||
|- | |- | ||
|48 | | 48 | ||
|1403. | | 1403.9 | ||
|9/4 | | [[9/4]] | ||
|} | |} | ||
== See also == | |||
* [[41edo]] – relative edo | |||
* [[65edt]] – relative edt | |||
* [[95ed5]] – relative ed5 | |||
* [[106ed6]] – relative ed6 | |||
* [[147ed12]] – relative ed12 | |||
* [[361ed448]] – close to the zeta-optimized tuning for 41edo | |||
[[Category:41edo]] | |||
[[Category: | |||
Latest revision as of 12:50, 19 June 2025
← 23edf | 24edf | 25edf → |
(convergent)
(convergent)
24 equal divisions of the perfect fifth (abbreviated 24edf or 24ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 24 equal parts of about 29.2 ¢ each. Each step represents a frequency ratio of (3/2)1/24, or the 24th root of 3/2.
Theory
24edf is related to 41edo, but with the 3/2 rather than the 2/1 being just. The octave is about 0.8269 cents compressed. Like 41edo, 24edf is consistent to the 16-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.8 | -0.8 | -1.7 | -7.7 | -1.7 | -5.3 | -2.5 | -1.7 | -8.6 | +1.9 | -2.5 |
Relative (%) | -2.8 | -2.8 | -5.7 | -26.5 | -5.7 | -18.1 | -8.5 | -5.7 | -29.3 | +6.6 | -8.5 | |
Steps (reduced) |
41 (17) |
65 (17) |
82 (10) |
95 (23) |
106 (10) |
115 (19) |
123 (3) |
130 (10) |
136 (16) |
142 (22) |
147 (3) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.2 | -6.1 | -8.6 | -3.3 | +8.7 | -2.5 | -8.3 | -9.4 | -6.1 | +1.1 | +11.9 | -3.3 |
Relative (%) | +17.7 | -20.9 | -29.3 | -11.3 | +29.8 | -8.5 | -28.5 | -32.1 | -20.9 | +3.7 | +40.6 | -11.3 | |
Steps (reduced) |
152 (8) |
156 (12) |
160 (16) |
164 (20) |
168 (0) |
171 (3) |
174 (6) |
177 (9) |
180 (12) |
183 (15) |
186 (18) |
188 (20) |
Subsets and supersets
24edt is the 6th highly composite edt. Its nontrivial subsets are 2, 3, 4, 6, 8, and 12.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 29.2 | 49/48, 50/49, 64/63, 81/80 |
2 | 58.5 | 25/24, 28/27, 33/32, 36/35 |
3 | 87.7 | 19/18, 20/19, 21/20, 22/21 |
4 | 117.0 | 14/13, 15/14, 16/15 |
5 | 146.2 | 12/11, 13/12 |
6 | 175.5 | 10/9, 11/10, 21/19 |
7 | 204.7 | 9/8 |
8 | 234.0 | 8/7, 15/13 |
9 | 263.2 | 7/6, 22/19 |
10 | 292.5 | 13/11, 19/16, 32/27 |
11 | 321.7 | 6/5 |
12 | 351.0 | 11/9, 16/13 |
13 | 380.2 | 5/4, 26/21 |
14 | 409.5 | 14/11, 19/15, 24/19 |
15 | 438.7 | 9/7, 32/25 |
16 | 468.0 | 21/16, 13/10 |
17 | 497.2 | 4/3 |
18 | 526.5 | 15/11, 19/14, 27/20 |
19 | 556.7 | 11/8, 18/13, 26/19 |
20 | 585.0 | 7/5, 45/32 |
21 | 614.2 | 10/7, 64/45 |
22 | 643.5 | 13/9, 16/11, 19/13 |
23 | 671.7 | 22/15, 28/19, 40/27 |
24 | 702.0 | 3/2 |
25 | 731.2 | 20/13, 32/21 |
26 | 760.5 | 14/9, 25/16 |
27 | 789.7 | 11/7, 19/12, 30/19 |
28 | 818.9 | 8/5 |
29 | 848.2 | 13/8, 18/11 |
30 | 877.4 | 5/3 |
31 | 906.7 | 22/13, 27/16, 32/19 |
32 | 935.9 | 12/7, 19/11 |
33 | 965.2 | 7/4, 26/15 |
34 | 994.4 | 16/9 |
35 | 1023.7 | 9/5 |
36 | 1052.9 | 11/6 |
37 | 1082.2 | 13/7, 15/8 |
38 | 1111.4 | 19/10, 21/11 |
39 | 1140.7 | 27/14, 35/18 |
40 | 1169.9 | 49/25, 56/28, 63/32 |
41 | 1199.2 | 2/1 |
42 | 1228.4 | 45/22, 49/24, 55/27, 81/40 |
43 | 1257.7 | 25/12, 33/16 |
44 | 1286.9 | 19/9, 21/10 |
45 | 1316.2 | 15/7 |
46 | 1345.4 | 13/6 |
47 | 1374.7 | 11/5 |
48 | 1403.9 | 9/4 |