|
|
(44 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = pentawood |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-06 11:49:01 UTC</tt>.<br>
| | | Periods = 5 |
| : The original revision id was <tt>565461621</tt>.<br>
| | | nLargeSteps = 5 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 5 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 1 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 0 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There is only one significant harmonic entropy minimum with this MOS pattern: [[Archytas clan|blackwood]], in which intervals of the prime numbers 3 and 7 are all represented using steps of [[5edo]], and the generator gets you to intervals of 5 like 6/5, 5/4, or 7/5.
| | | Pattern = LsLsLsLsLs |
| | }} |
| | {{MOS intro}} |
|
| |
|
| The true MOS, LsLsLsLsLs, is always proper because there is only one small step per period, but because there are 5 periods in an octave, there are a wealth of near-MOSes in which multiples of the period (that is, intervals of an even number of steps) are the only generic intervals that come in more than two different flavors. Specifically, there are 6 others: LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss. In the blackwood temperament, these are right on the boundary of being [[Rothenberg propriety|proper]] (because 1\15 is in the middle of the range of good blackwood generators).
| | There is only one significant [[harmonic entropy]] minimum with this MOS pattern: [[limmic temperaments#5-limit_.28blackwood.29|blackwood]], in which intervals of the prime numbers 3 and 7 are all represented using steps of [[5edo|5edo]], and the generator reaches intervals of 5 like 6/5, 5/4, or 7/5. |
| ||||||||||~ Generator ||~ Cents ||~ Comments ||
| |
| || 0\5 || || || || || 0 ||= ||
| |
| || || || || || 1\30 || 40 || ||
| |
| || || || || 1\25 || || 48 || ||
| |
| || || || || || || 240/(1+pi) || ||
| |
| || || || 1\20 || || || 60 ||= ||
| |
| || || || || || || 240/(1+e) || ||
| |
| || || || || 2\35 || || 68.57 || ||
| |
| || || || || || 3\50 || 72 || ||
| |
| || || 1\15 || || || || 80 ||= Blackwood is around here
| |
| Optimum rank range (L/s=2/1) for MOS ||
| |
| || || || || || || 240/(1+sq<span style="line-height: 1.5;">rt(3)</span>) || ||
| |
| || || || || 3\40 || || 90 ||= ||
| |
| || || || || || 5\65 || 92.31 ||= Golden blackwood ||
| |
| || || || || || || 240/(1+pi/2) || ||
| |
| || || || 2\25 || || || 96 ||= ||
| |
| || 1\10 || || || || || 120 ||= ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>5L 5s</title></head><body>There is only one significant harmonic entropy minimum with this MOS pattern: <a class="wiki_link" href="/Archytas%20clan">blackwood</a>, in which intervals of the prime numbers 3 and 7 are all represented using steps of <a class="wiki_link" href="/5edo">5edo</a>, and the generator gets you to intervals of 5 like 6/5, 5/4, or 7/5.<br />
| |
| <br />
| |
| The true MOS, LsLsLsLsLs, is always proper because there is only one small step per period, but because there are 5 periods in an octave, there are a wealth of near-MOSes in which multiples of the period (that is, intervals of an even number of steps) are the only generic intervals that come in more than two different flavors. Specifically, there are 6 others: LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss. In the blackwood temperament, these are right on the boundary of being <a class="wiki_link" href="/Rothenberg%20propriety">proper</a> (because 1\15 is in the middle of the range of good blackwood generators).<br />
| |
|
| |
|
| | In addition to the true MOS form (LsLsLsLsLs and sLsLsLsLsL), there are 6 near-MOS forms – LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss – in which the period and its multiples (intervals of 2, 4, 6, and 8 mossteps) have more than two varieties. These forms are proper if the bright generator is less than 160¢. |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| | {{MOS intervals}} |
| <th colspan="5">Generator<br />
| |
| </th>
| |
| <th>Cents<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>0\5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\30<br />
| |
| </td>
| |
| <td>40<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>48<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240/(1+pi)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>60<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240/(1+e)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>68.57<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\50<br />
| |
| </td>
| |
| <td>72<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>1\15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>80<br />
| |
| </td>
| |
| <td style="text-align: center;">Blackwood is around here<br />
| |
| Optimum rank range (L/s=2/1) for MOS<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240/(1+sq<span style="line-height: 1.5;">rt(3)</span>)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\40<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>90<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\65<br />
| |
| </td>
| |
| <td>92.31<br />
| |
| </td>
| |
| <td style="text-align: center;">Golden blackwood<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240/(1+pi/2)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | ==Modes== |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 6/5 = Qintosec ↑ |
| | | 7/5 = Warlock |
| | | 13/8 = Unnamed golden tuning |
| | | 7/4 = Quinkee |
| | | 2/1 = Blacksmith is optimal around here |
| | | 9/4 = Trisedodge |
| | | 13/5 = Unnamed golden tuning |
| | | 6/1 = Cloudtone ↓ |
| | }} |
| | |
| | [[Category:Pentawood| ]] |
| | [[Category:10-tone scales]] |
| | <!-- main article --> |
5L 5s, named pentawood in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 5 small steps, with a period of 1 large step and 1 small step that repeats every 240.0 ¢, or 5 times every octave. Generators that produce this scale range from 120 ¢ to 240 ¢, or from 0 ¢ to 120 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
There is only one significant harmonic entropy minimum with this MOS pattern: blackwood, in which intervals of the prime numbers 3 and 7 are all represented using steps of 5edo, and the generator reaches intervals of 5 like 6/5, 5/4, or 7/5.
In addition to the true MOS form (LsLsLsLsLs and sLsLsLsLsL), there are 6 near-MOS forms – LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss – in which the period and its multiples (intervals of 2, 4, 6, and 8 mossteps) have more than two varieties. These forms are proper if the bright generator is less than 160¢.
Intervals
Intervals of 5L 5s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-pentawdstep
|
Perfect 0-pentawdstep
|
P0pws
|
0
|
0.0 ¢
|
1-pentawdstep
|
Minor 1-pentawdstep
|
m1pws
|
s
|
0.0 ¢ to 120.0 ¢
|
Major 1-pentawdstep
|
M1pws
|
L
|
120.0 ¢ to 240.0 ¢
|
2-pentawdstep
|
Perfect 2-pentawdstep
|
P2pws
|
L + s
|
240.0 ¢
|
3-pentawdstep
|
Minor 3-pentawdstep
|
m3pws
|
L + 2s
|
240.0 ¢ to 360.0 ¢
|
Major 3-pentawdstep
|
M3pws
|
2L + s
|
360.0 ¢ to 480.0 ¢
|
4-pentawdstep
|
Perfect 4-pentawdstep
|
P4pws
|
2L + 2s
|
480.0 ¢
|
5-pentawdstep
|
Minor 5-pentawdstep
|
m5pws
|
2L + 3s
|
480.0 ¢ to 600.0 ¢
|
Major 5-pentawdstep
|
M5pws
|
3L + 2s
|
600.0 ¢ to 720.0 ¢
|
6-pentawdstep
|
Perfect 6-pentawdstep
|
P6pws
|
3L + 3s
|
720.0 ¢
|
7-pentawdstep
|
Minor 7-pentawdstep
|
m7pws
|
3L + 4s
|
720.0 ¢ to 840.0 ¢
|
Major 7-pentawdstep
|
M7pws
|
4L + 3s
|
840.0 ¢ to 960.0 ¢
|
8-pentawdstep
|
Perfect 8-pentawdstep
|
P8pws
|
4L + 4s
|
960.0 ¢
|
9-pentawdstep
|
Minor 9-pentawdstep
|
m9pws
|
4L + 5s
|
960.0 ¢ to 1080.0 ¢
|
Major 9-pentawdstep
|
M9pws
|
5L + 4s
|
1080.0 ¢ to 1200.0 ¢
|
10-pentawdstep
|
Perfect 10-pentawdstep
|
P10pws
|
5L + 5s
|
1200.0 ¢
|
Modes
Scale degrees of the modes of 5L 5s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (pentawddegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
5|0(5)
|
1
|
LsLsLsLsLs
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
Maj.
|
Perf.
|
0|5(5)
|
2
|
sLsLsLsLsL
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Min.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 5L 5s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\10
|
|
|
|
|
|
120.000
|
120.000
|
1:1
|
1.000
|
Equalized 5L 5s
|
|
|
|
|
|
6\55
|
130.909
|
109.091
|
6:5
|
1.200
|
Qintosec ↑
|
|
|
|
|
5\45
|
|
133.333
|
106.667
|
5:4
|
1.250
|
|
|
|
|
|
|
9\80
|
135.000
|
105.000
|
9:7
|
1.286
|
|
|
|
|
4\35
|
|
|
137.143
|
102.857
|
4:3
|
1.333
|
Supersoft 5L 5s
|
|
|
|
|
|
11\95
|
138.947
|
101.053
|
11:8
|
1.375
|
|
|
|
|
|
7\60
|
|
140.000
|
100.000
|
7:5
|
1.400
|
Warlock
|
|
|
|
|
|
10\85
|
141.176
|
98.824
|
10:7
|
1.429
|
|
|
|
3\25
|
|
|
|
144.000
|
96.000
|
3:2
|
1.500
|
Soft 5L 5s
|
|
|
|
|
|
11\90
|
146.667
|
93.333
|
11:7
|
1.571
|
|
|
|
|
|
8\65
|
|
147.692
|
92.308
|
8:5
|
1.600
|
|
|
|
|
|
|
13\105
|
148.571
|
91.429
|
13:8
|
1.625
|
Unnamed golden tuning
|
|
|
|
5\40
|
|
|
150.000
|
90.000
|
5:3
|
1.667
|
Semisoft 5L 5s
|
|
|
|
|
|
12\95
|
151.579
|
88.421
|
12:7
|
1.714
|
|
|
|
|
|
7\55
|
|
152.727
|
87.273
|
7:4
|
1.750
|
Quinkee
|
|
|
|
|
|
9\70
|
154.286
|
85.714
|
9:5
|
1.800
|
|
|
2\15
|
|
|
|
|
160.000
|
80.000
|
2:1
|
2.000
|
Basic 5L 5s Blacksmith is optimal around here
|
|
|
|
|
|
9\65
|
166.154
|
73.846
|
9:4
|
2.250
|
Trisedodge
|
|
|
|
|
7\50
|
|
168.000
|
72.000
|
7:3
|
2.333
|
|
|
|
|
|
|
12\85
|
169.412
|
70.588
|
12:5
|
2.400
|
|
|
|
|
5\35
|
|
|
171.429
|
68.571
|
5:2
|
2.500
|
Semihard 5L 5s
|
|
|
|
|
|
13\90
|
173.333
|
66.667
|
13:5
|
2.600
|
Unnamed golden tuning
|
|
|
|
|
8\55
|
|
174.545
|
65.455
|
8:3
|
2.667
|
|
|
|
|
|
|
11\75
|
176.000
|
64.000
|
11:4
|
2.750
|
|
|
|
3\20
|
|
|
|
180.000
|
60.000
|
3:1
|
3.000
|
Hard 5L 5s
|
|
|
|
|
|
10\65
|
184.615
|
55.385
|
10:3
|
3.333
|
|
|
|
|
|
7\45
|
|
186.667
|
53.333
|
7:2
|
3.500
|
|
|
|
|
|
|
11\70
|
188.571
|
51.429
|
11:3
|
3.667
|
|
|
|
|
4\25
|
|
|
192.000
|
48.000
|
4:1
|
4.000
|
Superhard 5L 5s
|
|
|
|
|
|
9\55
|
196.364
|
43.636
|
9:2
|
4.500
|
|
|
|
|
|
5\30
|
|
200.000
|
40.000
|
5:1
|
5.000
|
|
|
|
|
|
|
6\35
|
205.714
|
34.286
|
6:1
|
6.000
|
Cloudtone ↓
|
1\5
|
|
|
|
|
|
240.000
|
0.000
|
1:0
|
→ ∞
|
Collapsed 5L 5s
|