190edo: Difference between revisions
added links and todos |
m changed EDO intro to ED intro |
||
(19 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Music == | == Theory == | ||
190edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with a flat tendency, as [[harmonic]]s 3 through 13 are all tuned flat. | |||
190edo is interesting because of the utility of its approximations; it [[tempering out|tempers out]] [[1029/1024]], [[4375/4374]], [[385/384]], [[441/440]], [[3025/3024]], and [[9801/9800]]. It provides the [[optimal patent val]] for both the 7- and 11-limit versions of [[unidec]], the {{nowrap|72 & 118}} temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament [[portent]], which tempers out 385/384 and 441/440, and [[gamelan]], the rank-3 7-limit temperament which tempers out 1029/1024, as well as [[slendric]], the 2.3.7 subgroup temperament featured in the [[#Music]] section. In the 13-limit, 190et tempers out [[625/624]], [[729/728]], [[847/845]], [[1001/1000]] and [[1575/1573]], and provides the optimal patent val for the [[ekadash]] temperament and the rank-3 [[portentous]] temperament. | |||
The 190g [[val]] shows us a smooth path to the even higher limits. This extension tempers out [[289/288]], [[561/560]], [[595/594]] in the 17-limit; [[343/342]], [[476/475]], [[495/494]] in the 19-limit; and [[391/390]], [[529/528]] in the 23-limit. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|190|intervals=prime}} | |||
=== Subsets and supersets === | |||
Since 190 factors into {{factorization|190}}, 190edo has subset edos {{EDOs| 2, 5, 10, 19, 38, and 95 }}. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{Monzo| -301 190 }} | |||
| {{Mapping| 190 301 }} | |||
| +0.285 | |||
| 0.285 | |||
| 4.51 | |||
|- | |||
| 2.3.5 | |||
| 2109375/2097152, {{monzo| -7 22 -12 }} | |||
| {{Mapping| 190 301 441 }} | |||
| +0.341 | |||
| 0.246 | |||
| 3.89 | |||
|- | |||
| 2.3.5.7 | |||
| 1029/1024, 4375/4374, 235298/234375 | |||
| {{Mapping| 190 301 441 533 }} | |||
| +0.479 | |||
| 0.321 | |||
| 5.07 | |||
|- | |||
| 2.3.5.7.11 | |||
| 385/384, 441/440, 4375/4374, 234375/234256 | |||
| {{Mapping| 190 301 441 533 657 }} | |||
| +0.490 | |||
| 0.288 | |||
| 4.55 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 385/384, 441/440, 625/624, 729/728, 847/845 | |||
| {{Mapping| 190 301 441 533 657 703 }} | |||
| +0.432 | |||
| 0.293 | |||
| 4.63 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 | |||
| {{Mapping| 190 301 441 533 657 703 776 }} (190g) | |||
| +0.507 | |||
| 0.327 | |||
| 5.18 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 | |||
| {{Mapping| 190 301 441 533 657 703 776 807 }} (190g) | |||
| +0.463 | |||
| 0.327 | |||
| 5.17 | |||
|- | |||
| 2.3.5.7.11.13.17.19.23 | |||
| 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 | |||
| {{Mapping| 190 301 441 533 657 703 776 807 859 }} (190g) | |||
| +0.486 | |||
| 0.315 | |||
| 4.98 | |||
|} | |||
* 190et (190g val) has a lower relative error in the 23-limit than any previous equal temperaments, being the first to beat [[94edo|94]]. However, [[193edo|193]], only slightly larger, beats it. | |||
* It is also prominent in the 13- and 19-limit, with lower absolute errors than any previous equal temperaments. It beats [[183edo|183]] in either subgroup and is bettered by [[198edo|198]] in the 13-limit, and by 193 in the 19-limit. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 37\190 | |||
| 233.68 | |||
| 8/7 | |||
| [[Slendric]] | |||
|- | |||
| 1 | |||
| 43\190 | |||
| 271.58 | |||
| 75/64 | |||
| [[Sabric]] | |||
|- | |||
| 1 | |||
| 49\190 | |||
| 309.47 | |||
| 448/375 | |||
| [[Triwell]] | |||
|- | |||
| 1 | |||
| 71\190 | |||
| 448.42 | |||
| 35/27 | |||
| [[Semidimfourth]] | |||
|- | |||
| 1 | |||
| 83\190 | |||
| 524.21 | |||
| 65/48 | |||
| [[Widefourth]] | |||
|- | |||
| 2 | |||
| 28\190 | |||
| 176.84 | |||
| 195/176 | |||
| [[Quatracot]] | |||
|- | |||
| 2 | |||
| 29\190 | |||
| 183.16 | |||
| 10/9 | |||
| [[Unidec]] / ekadash | |||
|- | |||
| 2 | |||
| 59\190<br>(36\190) | |||
| 372.63<br>(227.37) | |||
| 26/21<br>(297/260) | |||
| [[Essence]] | |||
|- | |||
| 2 | |||
| 71\190<br>(24\190) | |||
| 448.42<br>(151.58) | |||
| 35/27<br>(12/11) | |||
| [[Neusec]] | |||
|- | |||
| 5 | |||
| 79\190<br>(3\190) | |||
| 498.95<br>(18.95) | |||
| 4/3<br>(81/80) | |||
| [[Quintile]] | |||
|- | |||
| 10 | |||
| 50\190<br>(7\190) | |||
| 315.79<br>(45.79) | |||
| 6/5<br>(40/39) | |||
| [[Deca]] | |||
|- | |||
| 10 | |||
| 79\190<br>(3\190) | |||
| 498.95<br>(18.95) | |||
| 4/3<br>(81/80) | |||
| [[Decile]] | |||
|- | |||
| 19 | |||
| 79\190<br>(1\190) | |||
| 498.95<br>(6.32) | |||
| 4/3<br>(225/224) | |||
| [[Enneadecal]] | |||
|- | |||
| 38 | |||
| 79\190<br>(1\190) | |||
| 265.26<br>(6.32) | |||
| 4/3<br>(225/224) | |||
| [[Hemienneadecal]] | |||
|- | |||
| 38 | |||
| 42\190<br>(2\190) | |||
| 265.26<br>(12.63) | |||
| 500/429<br>(144/143) | |||
| [[Semihemienneadecal]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
* [ | == Scales == | ||
* [ | * [[Slendric5]] | ||
* [[Slendric6]] | |||
* [[Slendric11]] | |||
* [[Slendric16]] | |||
== Music == | |||
; [[Chris Vaisvil]] | |||
[[ | * [http://micro.soonlabel.com/tuning-survey/daily20111026-the-11th-slendric-fanfare.mp3 ''The 11th Slendric Fanfare''] | ||
[ | * [http://micro.soonlabel.com/tuning-survey/daily20111026-16-slendric-virgins.mp3 ''16 Slendric Virgins''] | ||
[ | |||
[[Category:Ekadash]] | |||
[[Category:Gamelismic]] | |||
[[Category:Listen]] | |||
[[Category:Portent]] | |||
[[Category:Portentous]] | |||
[[Category:Unidec]] |
Latest revision as of 17:55, 19 February 2025
← 189edo | 190edo | 191edo → |
190 equal divisions of the octave (abbreviated 190edo or 190ed2), also called 190-tone equal temperament (190tet) or 190 equal temperament (190et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 190 equal parts of about 6.32 ¢ each. Each step represents a frequency ratio of 21/190, or the 190th root of 2.
Theory
190edo is distinctly consistent in the 15-odd-limit with a flat tendency, as harmonics 3 through 13 are all tuned flat.
190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024, and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 625/624, 729/728, 847/845, 1001/1000 and 1575/1573, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.
The 190g val shows us a smooth path to the even higher limits. This extension tempers out 289/288, 561/560, 595/594 in the 17-limit; 343/342, 476/475, 495/494 in the 19-limit; and 391/390, 529/528 in the 23-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.90 | -1.05 | -2.51 | -1.84 | -0.53 | +2.41 | -0.67 | -3.01 | -0.10 | -1.88 |
Relative (%) | +0.0 | -14.3 | -16.6 | -39.7 | -29.2 | -8.4 | +38.2 | -10.6 | -47.7 | -1.6 | -29.7 | |
Steps (reduced) |
190 (0) |
301 (111) |
441 (61) |
533 (153) |
657 (87) |
703 (133) |
777 (17) |
807 (47) |
859 (99) |
923 (163) |
941 (181) |
Subsets and supersets
Since 190 factors into 2 × 5 × 19, 190edo has subset edos 2, 5, 10, 19, 38, and 95.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-301 190⟩ | [⟨190 301]] | +0.285 | 0.285 | 4.51 |
2.3.5 | 2109375/2097152, [-7 22 -12⟩ | [⟨190 301 441]] | +0.341 | 0.246 | 3.89 |
2.3.5.7 | 1029/1024, 4375/4374, 235298/234375 | [⟨190 301 441 533]] | +0.479 | 0.321 | 5.07 |
2.3.5.7.11 | 385/384, 441/440, 4375/4374, 234375/234256 | [⟨190 301 441 533 657]] | +0.490 | 0.288 | 4.55 |
2.3.5.7.11.13 | 385/384, 441/440, 625/624, 729/728, 847/845 | [⟨190 301 441 533 657 703]] | +0.432 | 0.293 | 4.63 |
2.3.5.7.11.13.17 | 289/288, 385/384, 441/440, 561/560, 625/624, 847/845 | [⟨190 301 441 533 657 703 776]] (190g) | +0.507 | 0.327 | 5.18 |
2.3.5.7.11.13.17.19 | 289/288, 343/342, 385/384, 441/440, 476/475, 495/494, 847/845 | [⟨190 301 441 533 657 703 776 807]] (190g) | +0.463 | 0.327 | 5.17 |
2.3.5.7.11.13.17.19.23 | 289/288, 343/342, 385/384, 391/390, 441/440, 476/475, 495/494, 529/528 | [⟨190 301 441 533 657 703 776 807 859]] (190g) | +0.486 | 0.315 | 4.98 |
- 190et (190g val) has a lower relative error in the 23-limit than any previous equal temperaments, being the first to beat 94. However, 193, only slightly larger, beats it.
- It is also prominent in the 13- and 19-limit, with lower absolute errors than any previous equal temperaments. It beats 183 in either subgroup and is bettered by 198 in the 13-limit, and by 193 in the 19-limit.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 37\190 | 233.68 | 8/7 | Slendric |
1 | 43\190 | 271.58 | 75/64 | Sabric |
1 | 49\190 | 309.47 | 448/375 | Triwell |
1 | 71\190 | 448.42 | 35/27 | Semidimfourth |
1 | 83\190 | 524.21 | 65/48 | Widefourth |
2 | 28\190 | 176.84 | 195/176 | Quatracot |
2 | 29\190 | 183.16 | 10/9 | Unidec / ekadash |
2 | 59\190 (36\190) |
372.63 (227.37) |
26/21 (297/260) |
Essence |
2 | 71\190 (24\190) |
448.42 (151.58) |
35/27 (12/11) |
Neusec |
5 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Quintile |
10 | 50\190 (7\190) |
315.79 (45.79) |
6/5 (40/39) |
Deca |
10 | 79\190 (3\190) |
498.95 (18.95) |
4/3 (81/80) |
Decile |
19 | 79\190 (1\190) |
498.95 (6.32) |
4/3 (225/224) |
Enneadecal |
38 | 79\190 (1\190) |
265.26 (6.32) |
4/3 (225/224) |
Hemienneadecal |
38 | 42\190 (2\190) |
265.26 (12.63) |
500/429 (144/143) |
Semihemienneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct