1440edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|1440}} From a regular temperament perspective, 1440edo only has a consistency limit of 3 and does poorly with approximating lower harmonics. Howeve..." |
(No difference)
|
Revision as of 23:09, 5 May 2023
← 1439edo | 1440edo | 1441edo → |
From a regular temperament perspective, 1440edo only has a consistency limit of 3 and does poorly with approximating lower harmonics. However, 1440edo is worth considering as a higher-limit system, where it has excellent representation of the 2.15.17.19.21.23 subgroup. It may also be considered as every third step of 4320edo in this regard.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.288 | +0.353 | +0.341 | +0.257 | +0.349 | +0.306 | +0.065 | +0.045 | -0.013 | +0.052 | +0.059 |
Relative (%) | -34.6 | +42.4 | +40.9 | +30.8 | +41.8 | +36.7 | +7.8 | +5.4 | -1.6 | +6.3 | +7.1 | |
Steps (reduced) |
2282 (842) |
3344 (464) |
4043 (1163) |
4565 (245) |
4982 (662) |
5329 (1009) |
5626 (1306) |
5886 (126) |
6117 (357) |
6325 (565) |
6514 (754) |
Subsets and supersets
1440edo is notable for having a lot of divisors, namely 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60, 72, 80, 90, 96, 120, 144, 160, 180, 240, 288, 360, 480, 720. It is also a highly factorable equal division.
As an interval size measure, one step of 1440edo is called decifarab.