Horwell temperaments
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
Horwell temperaments temper out the horwell comma, [-16 1 5 1⟩ = 65625/65536.
Temperaments discussed elsewhere are
- Semabila (+49/48) → Mabila family
- Worschmidt (+126/125) → Würschmidt family
- Escaped (+245/243) → Escapade family
- Maquiloid (+686/675) → Maquila family
- Keen (+875/864) → Diaschismic family
- Hemithirds (+1029/1024) → Hemimean clan
- Orwell (+1728/1715) → Semicomma family
- Tertiaseptal (+2401/2400) → Breedsmic temperaments
- Pontiac (+4375/4374) → Schismatic family
- Countercata (+5120/5103) → Kleismic family
- Bisupermajor (+10976/10935) → Hemimage temperaments
- Eris (+16875/16807) → Mirkwai clan
- Narayana (+321489/320000) → Vishnuzmic family
- Paramity (+1600000/1594323) → Amity family
- Kaboom (+4802000/4782969) → Vavoom family
- Soviet ferris wheel (+[-5 -9 -5 11⟩) → 20th-octave temperaments
Mutt
Subgroup: 2.3.5
Comma list: [-44 -3 21⟩
Mapping: [⟨3 5 7], ⟨0 -7 -1]]
- mapping generators: ~98304/78125, ~393216/390625
Optimal tuning (POTE): ~98304/78125 = 1\3, ~5/4 = 385.980 (~393216/390625 = 14.020)
Optimal ET sequence: 84, 87, 171, 771, 942, 1113, 1284, 1455
Badness: 0.162467
7-limit
Subgroup: 2.3.5.7
Comma list: 65625/65536, 250047/250000
Mapping: [⟨3 5 7 8], ⟨0 -7 -1 12]]
Optimal tuning (POTE): ~63/50 = 1\3, ~5/4 = 385.964 (~126/125 = 14.036)
Optimal ET sequence: 84, 87, 171
Badness: 0.028406
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4375/4356, 16384/16335
Mapping: [⟨3 5 7 8 10], ⟨0 -7 -1 12 11]]
Optimal tuning (POTE): ~44/35 = 1\3, ~5/4 = 386.020 (~126/125 = 13.980)
Optimal ET sequence: 84, 87, 171, 258, 429e
Badness: 0.058344
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 625/624, 2200/2197
Mapping: [⟨3 5 7 8 10 11], ⟨0 -7 -1 12 11 3]]
Optimal tuning (POTE): ~44/35 = 1\3, ~5/4 = 386.022 (~126/125 = 13.978)
Optimal ET sequence: 84, 87, 171, 258, 429ef
Badness: 0.029089
Fifthplus
Fifthplus (22 & 171) tempers out the sesesix comma, [-74 13 23⟩ in the 5-limit. The name "fifthplus" means using a sharp fifth interval (such as superpyth fifth) as a generator.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 420175/419904
Mapping: [⟨1 11 -3 20], ⟨0 -23 13 -42]]
Optimal tuning (POTE): ~2 = 1\1, ~5488/3645 = 708.774
Optimal ET sequence: 22, 149, 171, 1903c, 2074c, 2245cd, 2416cd, 2587cd, 2758cd, 2929cd, 3100cd, 3271ccd, 3442ccd, 3613ccd
Badness: 0.025840
Emkay
Emkay (87 & 224) tempers out the same 5-limit comma as the emka temperament (37 & 50), but with the horwell (65625/65536) rather than the hemimean (3136/3125) tempered out.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 244140625/243045684
Mapping: [⟨1 14 6 -28], ⟨0 -27 -8 67]]
Optimal tuning (POTE): ~2 = 1\1, ~3125/2268 = 551.7745
Optimal ET sequence: 87, 137, 224, 311, 535, 1381c, 1916c
Badness: 0.135696
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 65625/65536
Mapping: [⟨1 14 6 -28 3], ⟨0 -27 -8 67 1]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.7746
Optimal ET sequence: 87, 137, 224, 311, 535, 1381ce, 1916ce
Badness: 0.035586
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1575/1573, 2080/2079, 2200/2197
Mapping: [⟨1 14 6 -28 3 6], ⟨0 -27 -8 67 1 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.7749
Optimal ET sequence: 87, 137, 224, 311, 535, 1916cef, 2451cceff, 2986cceeff
Badness: 0.017853
See also
Kastro
Subgroup: 2.3.5.7
Comma list: 65625/65536, 117649/116640
Mapping: [⟨1 5 1 6], ⟨0 -31 12 -29]]
Optimal tuning (POTE): ~2 = 1\1, ~3375/3136 = 132.1845
Optimal ET sequence: 109, 118, 345d
Badness: 0.183435
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 3388/3375, 12005/11979
Mapping: [⟨1 5 1 6 5], ⟨0 -31 12 -29 -14]]
Optimal tuning (POTE): ~2 = 1\1, ~121/112 = 132.1864
Optimal ET sequence: 109, 118, 345de, 463de, 581dde
Badness: 0.052693
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 364/363, 385/384, 3388/3375
Mapping: [⟨1 5 1 6 5 7], ⟨0 -31 12 -29 -14 -30]]
Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 132.1789
Optimal ET sequence: 109, 118f, 227f
Badness: 0.046695
Oquatonic
- For the 5-limit version of this temperament, see 28th-octave temperaments #Oquatonic (5-limit).
The oquatonic has a period of 1/28 octave and tempers out the horwell (65625/65536) and the dimcomp (390625/388962), as well as the hemfiness (4096000/4084101, saquinru-atriyo). In this temperament, major third of 5/4 is mapped into 9\28.
The name oquatonic was given by Petr Pařízek in 2011 as an abbreviation of the Italian ottantaquatro ("eighty-four")[1].
Subgroup: 2.3.5.7
Comma list: 65625/65536, 390625/388962
Mapping: [⟨28 0 65 123], ⟨0 1 0 -1]]
- mapping generators: ~128/125, ~3
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.1137
Optimal ET sequence: 28, 56, 84, 140, 224, 364, 588, 952
Badness: 0.088286
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 6250/6237, 65625/65536
Mapping: [⟨28 0 65 123 230], ⟨0 1 0 -1 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.0186
Optimal ET sequence: 84, 140, 224, 364, 588, 1400cd, 1988cd, 2576ccdd
Badness: 0.047853
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1375/1372, 2080/2079, 2200/2197
Mapping: [⟨28 0 65 123 230 148], ⟨0 1 0 -1 -3 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.0288
Optimal ET sequence: 84, 140, 224, 364, 588
Badness: 0.021968
Bezique
Bezique splits the octave into 32 equal parts and reaches 3/2, 8/5 and 11/8 in just one generator with the 64-tone mos. The card game of bezique is played with two packs of 32 cards, hence the name.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 847288609443/843308032000
Mapping: [⟨32 0 125 -113], ⟨0 1 -1 4]]
- mapping generators: ~100352/98415, ~3
Optimal tuning (CTE): ~100352/98415 = 1\32, ~3/2 = 701.610
Optimal ET sequence: 224, 544, 768, 1312
Badness: 0.270
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 46656/46585, 65625/65536
Mapping: [⟨32 0 125 -113 60], ⟨0 1 -1 4 1]]
Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.601
Optimal ET sequence: 224, 544, 768
Badness: 0.0680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 729/728, 1575/1573, 4225/4224, 6656/6655
Mapping: [⟨32 0 125 -113 60 17], ⟨0 1 -1 4 1 2]]
Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.593
Optimal ET sequence: 224, 544, 768, 1312
Badness: 0.0298