5L 3s/Temperaments
Oneirotonic temperaments have a sort of analogy to diatonic temperaments superpyth and meantone in how they treat the large step. In diatonic the large step approximates 9/8 (a very good 9/8 in 12edo), but superpyth has 9/8 ~ 8/7, and meantone has 9/8 ~ 10/9. In oneirotonic the large step tends to approximate 10/9 (and is a very good 10/9 in 13edo which is the oneirotonic analogue to 12edo), but different oneiro temperaments do different things with it. In A-Team (13&18), 10/9 is equated with 9/8, making the major oneirothird a 5/4 (thus is "meantone" in that sense). In both Petrtri (13&21) and Tridec (21&29), 10/9 is equated with 11/10, making the major oneirothird a 11/9; and the perfect oneirofourth is equated to 13/10. So the compressed major triad add2 (R-M2-M3-M5, M5 = major oneirofifth = minor fifth in 13edo) is interpreted as 9:10:11:13 in petrtri, analogous to meantone's 8:9:10:12. Thus Petrtri and Tridec are the same temperament when you only care about the 9:10:11:13, or equivalently the 2.9/5.11/5.13/5 subgroup. This is one reason why Tridec can be viewed as the oneirotonic analogue of flattone: it's a flatter variant of the flat-of-13edo oneiro temperament on the 2.9/5.11/5.13/5 subgroup.
Vulture/Buzzard, in which four generators make a 3/1 (and three generators approximate an octave plus 8/7), is the only harmonic entropy minimum in the oneirotonic range. However, the rest of this region is still rich in notable subgroup temperaments.
Petrtri
Subgroup: 2.11/5.13/5
Comma: 2200/2197
Svalname: 3&5
POT2 generator: ~13/10 = 455.012
Gencom: [2 13/10; 2200/2197]
Gencom mapping: [<1 0 -1/3 0 -1/3 2/3|, <0 0 -4/3 0 5/3 -1/3|]
Mapping: [<1 0 1|, <0 3 1|]
EDOs: 21, 29, 153, 182, 211, 240, 269, 298, 327, 356, 385, 509, 741c, 1126c
Tridec
Subgroup: 2.3.7/5.11/5.13/5
Period: 1\1
Optimal (POTE) generator: 455.2178
EDO generators: 8\21, 11\29, 14\37
Comma list: 196/195, 847/845, 1001/1000
Mapping: [⟨2: 1, 3: 5, 7/5: 2, 11/5: 0, 13/5: 1], ⟨2: 0, 3: -9, 7/5: -4, 11/5: 3, 13/5: 1]]
Mapping generators: ~2, ~13/10
Optimal ET sequence: 21, 29, 37
Intervals
Sortable table of intervals in the Dylathian mode and their Tridec interpretations:
Degree | Size in 21edo | Size in 29edo | Size in 37edo | Size in POTE tuning | Note name on Q | Approximate ratios | #Gens up |
---|---|---|---|---|---|---|---|
1 | 0\21, 0.00 | 0\29, 0.00 | 0\37, 0.00 | 0.00 | Q | 1/1 | 0 |
2 | 3\21, 171.43 | 4\29, 165.52 | 5\37, 163.16 | 165.65 | J | 11/10, 10/9 | +3 |
3 | 6\21, 342.86 | 8\29, 331.03 | 10\37, 324.32 | 331.31 | K | 11/9, 6/5 | +6 |
4 | 8\21, 457.14 | 11\29, 455.17 | 14\37, 454.05 | 455.17 | L | 13/10, 9/7 | +1 |
5 | 11\21, 628.57 | 15\29, 620.69 | 19\37, 616.22 | 620.87 | M | 13/9, 10/7 | +4 |
6 | 14\21, 800.00 | 19\29, 786.21 | 23\37, 778.38 | 786.52 | N | 11/7 | +7 |
7 | 16\21, 914.29 | 22\29, 910.34 | 28\37, 908.11 | 910.44 | O | 22/13 | +2 |
8 | 19\21, 1085.71 | 26\29, 1075.86 | 33\37, 1070.27 | 1076.09 | P | 13/7, 28/15 | +5 |
Petrtri extension
Subgroup: 2.5.9.11.13.17
Period: 1\1
Optimal (POL2) generator: 459.1502
EDO generators: 5\13, 8\21, 13\34
Comma list: 100/99, 144/143, 170/169, 221/220
Mapping (for 2, 5, 9, 11, 13, 17): [⟨2: 1, 5: 5, 9: 7, 11: 5, 13: 6, 17: 6], ⟨2: 0, 5: -7, 9: -10, 11: -4, 13: -6, 17: -5]]
Mapping generators: ~2, ~13/10
Optimal ET sequence: 13, 21, 34
Intervals
Sortable table of intervals in the Dylathian mode and their Petrtri interpretations:
Degree | Size in 13edo | Size in 21edo | Size in 34edo | Size in POTE tuning | Note name on Q | Approximate ratios | #Gens up |
---|---|---|---|---|---|---|---|
1 | 0\13, 0.00 | 0\21, 0.00 | 0\34, 0.00 | 0.00 | Q | 1/1 | 0 |
2 | 2\13, 184.62 | 3\21, 171.43 | 5\34, 176.47 | 177.45 | J | 10/9, 11/10 | +3 |
3 | 4\13, 369.23 | 6\21, 342.86 | 10\34, 352.94 | 354.90 | K | 11/9, 16/13 | +6 |
4 | 5\13, 461.54 | 8\21, 457.14 | 13\34, 458.82 | 459.15 | L | 13/10, 17/13, 22/17 | +1 |
5 | 7\13, 646.15 | 11\21, 628.57 | 18\34, 635.294 | 636.60 | M | 13/9, 16/11, 23/16 (esp. 21edo) | +4 |
6 | 9\13, 830.77 | 14\21, 800.00 | 23\34, 811.77 | 814.05 | N | 8/5 | +7 |
7 | 10\13, 923.08 | 16\21, 914.29 | 26\34, 917.65 | 918.30 | O | 17/10 | +2 |
8 | 12\13, 1107.69 | 19\21, 1085.71 | 31\34, 1094.12 | 1095.75 | P | 17/9, 32/17, 15/8 | +5 |
A-Team
Subgroup: 2.5.9.21
Period: 1\1
Optimal (POL2) generator: 464.3865
EDO generators: 5\13, 7\18, 12\31, 17\44
Lookalike temperament: Dual-3 A-Team
Comma list: 81/80, 1029/1024
Mapping: [⟨2: 1, 5: 0, 9: 2, 21: 4], ⟨2: 0, 5: 6, 9: 3, 21: 1]]
Mapping generators: ~2, ~21/16
Optimal ET sequence: 13, 18, 31, 44
Intervals
Sortable table of intervals in the Dylathian mode and their A-Team interpretations:
Degree | Size in 13edo | Size in 18edo | Size in 31edo | Note name on Q | Approximate ratios[1] | #Gens up |
---|---|---|---|---|---|---|
1 | 0\13, 0.00 | 0\18, 0.00 | 0\31, 0.00 | Q | 1/1 | 0 |
2 | 2\13, 184.62 | 3\18, 200.00 | 5\31, 193.55 | J | 9/8, 10/9 | +3 |
3 | 4\13, 369.23 | 6\18, 400.00 | 10\31, 387.10 | K | 5/4 | +6 |
4 | 5\13, 461.54 | 7\18, 466.67 | 12\31, 464.52 | L | 21/16, 13/10 | +1 |
5 | 7\13, 646.15 | 10\18, 666.66 | 17\31, 658.06 | M | 13/9, 16/11 | +4 |
6 | 9\13, 830.77 | 13\18, 866.66 | 22\31, 851.61 | N | 13/8, 18/11 | +7 |
7 | 10\13, 923.08 | 14\18, 933.33 | 24\31, 929.03 | O | 12/7 | +2 |
8 | 12\13, 1107.69 | 17\18, 1133.33 | 29\31, 1122.58 | P | +5 |
- ↑ The ratio interpretations that are not valid for 18edo are italicized.
Buzzard
Subgroup: 2.3.5.7
Period: 1\1
Optimal (POTE) generator: ~21/16 = 475.636
EDO generators: 15\38, 17\43, 19\48, 21\53, 23\58, 25\63
Commas: 1728/1715, 5120/5103
Mapping: [<1 0 -6 4|, <0 4 21 -3|]
Mapping generators: ~2, ~21/16
Wedgie: <<4 21 -3 24 -16 -66||
Optimal ET sequence: 48, 53, 111, 164d, 275d
Badness: 0.0480
Intervals
Sortable table of intervals in the Dylathian mode and their Buzzard interpretations:
Degree | Size in 38edo | Size in 53edo | Size in 63edo | Size in POTE tuning | Note name on Q | Approximate ratios | #Gens up |
---|---|---|---|---|---|---|---|
1 | 0\38, 0.00 | 0\53, 0.00 | 0\63, 0.00 | 0.00 | Q | 1/1 | 0 |
2 | 7\38, 221.05 | 10\53, 226.42 | 12\63, 228.57 | 227.07 | J | 8/7 | +3 |
3 | 14\38, 442.10 | 20\53, 452.83 | 24\63, 457.14 | 453.81 | K | 13/10, 9/7 | +6 |
4 | 15\38, 473.68 | 21\53, 475.47 | 25\63, 476.19 | 475.63 | L | 21/16 | +1 |
5 | 22\38, 694.73 | 31\53, 701.89 | 37\63, 704.76 | 702.54 | M | 3/2 | +4 |
6 | 29\38, 915.78 | 41\53, 928.30 | 49\63, 933.33 | 929.45 | N | 12/7, 22/13 | +7 |
7 | 30\38, 947.36 | 42\53, 950.94 | 50\63, 952.38 | 951.27 | O | 26/15 | +2 |
8 | 37\38, 1168.42 | 52\53, 1177.36 | 62\63, 1180.95 | 1178.18 | P | 108/55, 160/81 | +5 |