356edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 355edo 356edo 357edo →
Prime factorization 22 × 89
Step size 3.37079¢ 
Fifth 208\356 (701.124¢) (→52\89)
Semitones (A1:m2) 32:28 (107.9¢ : 94.38¢)
Consistency limit 3
Distinct consistency limit 3

356 equal divisions of the octave (abbreviated 356edo or 356ed2), also called 356-tone equal temperament (356tet) or 356 equal temperament (356et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 356 equal parts of about 3.37 ¢ each. Each step represents a frequency ratio of 21/356, or the 356th root of 2.

Odd harmonics

Approximation of odd harmonics in 356edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.83 +1.33 -1.41 -1.66 +1.49 -1.20 +0.50 -0.46 -0.88 +1.13 -1.31
Relative (%) -24.7 +39.4 -41.8 -49.3 +44.2 -35.7 +14.7 -13.7 -26.2 +33.5 -38.8
Steps
(reduced)
564
(208)
827
(115)
999
(287)
1128
(60)
1232
(164)
1317
(249)
1391
(323)
1455
(31)
1512
(88)
1564
(140)
1610
(186)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.