12L 5s

From Xenharmonic Wiki
Revision as of 07:09, 9 November 2024 by Ganaram inukshuk (talk | contribs) (Proposed Names: Clarified that mode names are tuning-specific; some rewording)
Jump to navigation Jump to search
↖ 11L 4s ↑ 12L 4s 13L 4s ↗
← 11L 5s 12L 5s 13L 5s →
↙ 11L 6s ↓ 12L 6s 13L 6s ↘
┌╥╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬┐
│║║║│║║│║║║│║║│║║││
│││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLsLLsLLLsLLsLLs
sLLsLLsLLLsLLsLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 7\17 to 5\12 (494.1 ¢ to 500.0 ¢)
Dark 7\12 to 10\17 (700.0 ¢ to 705.9 ¢)
TAMNAMS information
Related to 5L 2s (diatonic)
With tunings 2:1 to 3:1 (hypohard)
Related MOS scales
Parent 5L 7s
Sister 5L 12s
Daughters 17L 12s, 12L 17s
Neutralized 7L 10s
2-Flought 29L 5s, 12L 22s
Equal tunings
Equalized (L:s = 1:1) 7\17 (494.1 ¢)
Supersoft (L:s = 4:3) 26\63 (495.2 ¢)
Soft (L:s = 3:2) 19\46 (495.7 ¢)
Semisoft (L:s = 5:3) 31\75 (496.0 ¢)
Basic (L:s = 2:1) 12\29 (496.6 ¢)
Semihard (L:s = 5:2) 29\70 (497.1 ¢)
Hard (L:s = 3:1) 17\41 (497.6 ¢)
Superhard (L:s = 4:1) 22\53 (498.1 ¢)
Collapsed (L:s = 1:0) 5\12 (500.0 ¢)

12L 5s, also called p-enharmonic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 5 small steps, repeating every octave. 12L 5s is a grandchild scale of 5L 2s, expanding it by 10 tones. Generators that produce this scale range from 494.1 ¢ to 500 ¢, or from 700 ¢ to 705.9 ¢. Temperaments supported by this scale include those under the Pythagorean and schismic families, characterized by a diesis (the difference between a large step and two small steps) that is smaller than the chroma.

The leapday/leapweek version is proper, but the Pythagorean/schismic version is improper (it does not become proper until you add 12 more notes to form the schismic 29-note scale).

Intervals

Intervals of 12L 5s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0 ¢
1-mosstep Minor 1-mosstep m1ms s 0.0 ¢ to 70.6 ¢
Major 1-mosstep M1ms L 70.6 ¢ to 100.0 ¢
2-mosstep Minor 2-mosstep m2ms L + s 100.0 ¢ to 141.2 ¢
Major 2-mosstep M2ms 2L 141.2 ¢ to 200.0 ¢
3-mosstep Minor 3-mosstep m3ms 2L + s 200.0 ¢ to 211.8 ¢
Major 3-mosstep M3ms 3L 211.8 ¢ to 300.0 ¢
4-mosstep Minor 4-mosstep m4ms 2L + 2s 200.0 ¢ to 282.4 ¢
Major 4-mosstep M4ms 3L + s 282.4 ¢ to 300.0 ¢
5-mosstep Minor 5-mosstep m5ms 3L + 2s 300.0 ¢ to 352.9 ¢
Major 5-mosstep M5ms 4L + s 352.9 ¢ to 400.0 ¢
6-mosstep Minor 6-mosstep m6ms 4L + 2s 400.0 ¢ to 423.5 ¢
Major 6-mosstep M6ms 5L + s 423.5 ¢ to 500.0 ¢
7-mosstep Diminished 7-mosstep d7ms 4L + 3s 400.0 ¢ to 494.1 ¢
Perfect 7-mosstep P7ms 5L + 2s 494.1 ¢ to 500.0 ¢
8-mosstep Minor 8-mosstep m8ms 5L + 3s 500.0 ¢ to 564.7 ¢
Major 8-mosstep M8ms 6L + 2s 564.7 ¢ to 600.0 ¢
9-mosstep Minor 9-mosstep m9ms 6L + 3s 600.0 ¢ to 635.3 ¢
Major 9-mosstep M9ms 7L + 2s 635.3 ¢ to 700.0 ¢
10-mosstep Perfect 10-mosstep P10ms 7L + 3s 700.0 ¢ to 705.9 ¢
Augmented 10-mosstep A10ms 8L + 2s 705.9 ¢ to 800.0 ¢
11-mosstep Minor 11-mosstep m11ms 7L + 4s 700.0 ¢ to 776.5 ¢
Major 11-mosstep M11ms 8L + 3s 776.5 ¢ to 800.0 ¢
12-mosstep Minor 12-mosstep m12ms 8L + 4s 800.0 ¢ to 847.1 ¢
Major 12-mosstep M12ms 9L + 3s 847.1 ¢ to 900.0 ¢
13-mosstep Minor 13-mosstep m13ms 9L + 4s 900.0 ¢ to 917.6 ¢
Major 13-mosstep M13ms 10L + 3s 917.6 ¢ to 1000.0 ¢
14-mosstep Minor 14-mosstep m14ms 9L + 5s 900.0 ¢ to 988.2 ¢
Major 14-mosstep M14ms 10L + 4s 988.2 ¢ to 1000.0 ¢
15-mosstep Minor 15-mosstep m15ms 10L + 5s 1000.0 ¢ to 1058.8 ¢
Major 15-mosstep M15ms 11L + 4s 1058.8 ¢ to 1100.0 ¢
16-mosstep Minor 16-mosstep m16ms 11L + 5s 1100.0 ¢ to 1129.4 ¢
Major 16-mosstep M16ms 12L + 4s 1129.4 ¢ to 1200.0 ¢
17-mosstep Perfect 17-mosstep P17ms 12L + 5s 1200.0 ¢

Modes

Scale degrees of the modes of 12L 5s
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
16|0 1 LLLsLLsLLLsLLsLLs Perf. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Maj. Maj. Aug. Maj. Maj. Maj. Maj. Maj. Maj. Perf.
15|1 8 LLLsLLsLLsLLLsLLs Perf. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Maj. Maj. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Perf.
14|2 15 LLsLLLsLLsLLLsLLs Perf. Maj. Maj. Min. Maj. Maj. Maj. Perf. Maj. Maj. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Perf.
13|3 5 LLsLLLsLLsLLsLLLs Perf. Maj. Maj. Min. Maj. Maj. Maj. Perf. Maj. Maj. Perf. Maj. Maj. Min. Maj. Maj. Maj. Perf.
12|4 12 LLsLLsLLLsLLsLLLs Perf. Maj. Maj. Min. Maj. Maj. Min. Perf. Maj. Maj. Perf. Maj. Maj. Min. Maj. Maj. Maj. Perf.
11|5 2 LLsLLsLLLsLLsLLsL Perf. Maj. Maj. Min. Maj. Maj. Min. Perf. Maj. Maj. Perf. Maj. Maj. Min. Maj. Maj. Min. Perf.
10|6 9 LLsLLsLLsLLLsLLsL Perf. Maj. Maj. Min. Maj. Maj. Min. Perf. Maj. Min. Perf. Maj. Maj. Min. Maj. Maj. Min. Perf.
9|7 16 LsLLLsLLsLLLsLLsL Perf. Maj. Min. Min. Maj. Maj. Min. Perf. Maj. Min. Perf. Maj. Maj. Min. Maj. Maj. Min. Perf.
8|8 6 LsLLLsLLsLLsLLLsL Perf. Maj. Min. Min. Maj. Maj. Min. Perf. Maj. Min. Perf. Maj. Min. Min. Maj. Maj. Min. Perf.
7|9 13 LsLLsLLLsLLsLLLsL Perf. Maj. Min. Min. Maj. Min. Min. Perf. Maj. Min. Perf. Maj. Min. Min. Maj. Maj. Min. Perf.
6|10 3 LsLLsLLLsLLsLLsLL Perf. Maj. Min. Min. Maj. Min. Min. Perf. Maj. Min. Perf. Maj. Min. Min. Maj. Min. Min. Perf.
5|11 10 LsLLsLLsLLLsLLsLL Perf. Maj. Min. Min. Maj. Min. Min. Perf. Min. Min. Perf. Maj. Min. Min. Maj. Min. Min. Perf.
4|12 17 sLLLsLLsLLLsLLsLL Perf. Min. Min. Min. Maj. Min. Min. Perf. Min. Min. Perf. Maj. Min. Min. Maj. Min. Min. Perf.
3|13 7 sLLLsLLsLLsLLLsLL Perf. Min. Min. Min. Maj. Min. Min. Perf. Min. Min. Perf. Min. Min. Min. Maj. Min. Min. Perf.
2|14 14 sLLsLLLsLLsLLLsLL Perf. Min. Min. Min. Min. Min. Min. Perf. Min. Min. Perf. Min. Min. Min. Maj. Min. Min. Perf.
1|15 4 sLLsLLLsLLsLLsLLL Perf. Min. Min. Min. Min. Min. Min. Perf. Min. Min. Perf. Min. Min. Min. Min. Min. Min. Perf.
0|16 11 sLLsLLsLLLsLLsLLL Perf. Min. Min. Min. Min. Min. Min. Dim. Min. Min. Perf. Min. Min. Min. Min. Min. Min. Perf.

Proposed names

Declan Paul Boushy has proposed names for these modes corresponding to step ratios 3:1 and 4:1.

Scales

Scale tree

Template:Scale tree