378edo

From Xenharmonic Wiki
Revision as of 14:39, 9 November 2023 by FloraC (talk | contribs) (Adopt template: EDO intro; +prime error table; +subsets and supersets; -redundant categories)
Jump to navigation Jump to search
← 377edo 378edo 379edo →
Prime factorization 2 × 33 × 7
Step size 3.1746 ¢ 
Fifth 221\378 (701.587 ¢)
Semitones (A1:m2) 35:29 (111.1 ¢ : 92.06 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

The equal temperament tempers out 32805/32768 (schisma) in the 5-limit and 3136/3125 in the 7-limit, so that it supports bischismic, and in fact provides the optimal patent val. It tempers out 441/440 and 8019/8000 in the 11-limit and 729/728 and 1001/1000 in the 13-limit so that it supports 11- and 13-limit bischismatic, and it also gives the optimal patent val for 13-limit bischismic.

Prime harmonics

Approximation of prime harmonics in 378edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.37 +0.99 -0.57 +1.06 +0.74 -0.19 +0.90 +0.30 -1.01 +1.00
Relative (%) +0.0 -11.6 +31.1 -18.0 +33.5 +23.4 -6.1 +28.3 +9.4 -31.7 +31.4
Steps
(reduced)
378
(0)
599
(221)
878
(122)
1061
(305)
1308
(174)
1399
(265)
1545
(33)
1606
(94)
1710
(198)
1836
(324)
1873
(361)

Subsets and supersets

Since 378 factors into 2 × 33 × 7, 378edo has subset edos 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, and 189.