Extended meantone notation

Revision as of 22:30, 4 May 2025 by ArrowHead294 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)

Meantone can be notated with a chain of fifths consisting of the 7 natural notes along with sharps and flats:

... Fπ„«β€Šβ€”β€ŠCπ„«β€Šβ€”β€ŠGπ„«β€Šβ€”β€ŠDπ„«β€Šβ€”β€ŠAπ„«β€Šβ€”β€ŠEπ„«β€Šβ€”β€ŠBπ„«β€Šβ€”β€ŠFβ™­β€Šβ€”β€ŠCβ™­β€Šβ€”β€ŠGβ™­β€Šβ€”β€ŠDβ™­β€Šβ€”β€ŠAβ™­β€Šβ€”β€ŠEβ™­β€Šβ€”β€ŠBβ™­β€Šβ€”β€ŠFβ€Šβ€”β€ŠCβ€Šβ€”β€ŠGβ€Šβ€”β€ŠDβ€Šβ€”β€ŠAβ€Šβ€”β€ŠEβ€Šβ€”β€ŠBβ€Šβ€”β€ŠFβ™―β€Šβ€”β€ŠCβ™―β€Šβ€”β€ŠGβ™―β€Šβ€”β€ŠDβ™―β€Šβ€”β€ŠAβ™―β€Šβ€”β€ŠEβ™―β€Šβ€”β€ŠBβ™―β€Šβ€”β€ŠFπ„ͺβ€Šβ€”β€ŠCπ„ͺβ€Šβ€”β€ŠGπ„ͺβ€Šβ€”β€ŠDπ„ͺβ€Šβ€”β€ŠAπ„ͺβ€Šβ€”β€ŠEπ„ͺβ€Šβ€”β€ŠBπ„ͺ ...

The chain is theoretically infinite, and Cβ™― and Dβ™­ are not (in general) equivalent. When meantone is extended beyond 12 notes, it may require double-sharps, double-flats, and beyond. To avoid this, two new accidental pairs are introduced that raise/lower by the diesis and the kleisma.

Symbol Interval Examples Fifthspan
Raise Lower
β™― β™­ Chromatic
semitone
Augmented
unison (A1)
C–Cβ™―
E♭–E
+7
↑ ↓ Diesis Diminished 2nd (d2) C♯–Dβ™­
D♯–E
βˆ’12
+ βˆ’ Kleisma Negative double-
diminished 2nd (-dd2)
Cβ™­β€Šβ€“β€ŠBβ™―
Fβ™­β€Šβ€“β€ŠEβ™―
+19

Because 19 βˆ’ 12 = 7, d2 + βˆ’dd2 = A1, and a diesis plus a kleisma equals a chromatic semitone.

An octave is made up of:

  • 7 diatonic semitones and 5 chromatic semitones = 7 m2 + 5 A1 = 12 steps
  • 12 chromatic semitones and 7 dieses = 12 A1 + 7 d2 = 19 steps
  • 19 dieses and 12 kleismas = 19 d2 + 12 βˆ’dd2 = 31 steps

The diesis represents the just intervals 128/125 and 648/625 among others, while the meantone kleisma represents 15625/15552 = [-6 -5 6⟩ and 3125/3072 = [-10 -1 5⟩ among others. In septimal meantone, where 7/4 is an augmented sixth, the diesis also represents 36/35, 50/49, and 64/63, while the kleisma also represents 49/48 and 245/243.

The enharmonic unisons ↓d2 and βˆ’β†“A1 create various notational equivalences:

  • B♯↑ and Bπ„ͺβˆ’ are equal to C
  • C+↑ is equal to Cβ™― (because the two semisharps add up)
  • D𝄫↓ and Dβ™­β™­β™­βˆ’ are equal to C

If the fifth is wider than 7\12 = 700β€―Β’, Cβ™― is higher in pitch than Dβ™­ and the diesis becomes a descending pythagorean comma. In 12edo, the tempering out of the diesis means that Cβ™― = Dβ™­.

If the fifth is narrower than 11\19 = ~695Β’, Bβ™― is lower in pitch than Cβ™­ and the kleisma becomes a descending double-diminished 2nd. In 19edo, the tempering out of the kleisma means that Bβ™― = Cβ™­.

Various EDOs that support meantone
EDO Approximate
syntonic
comma

fraction
Steps Relative sizes of the
chromatic semitone,
diesis, and kleisma
Chromatic
semitone
Diatonic
semitone
Diesis Kleisma
A1 m2 d2 βˆ’dd2
12edo 1⁄11Β comma 1 1 0 1 Chromatic semitone is equal to kleisma,
diesis is tempered out
19edo 1⁄3Β comma 1 2 1 0 Chromatic semitone is equal to diesis,
kleisma is tempered out
26edo 1 3 2 βˆ’1 Chromatic semitone is smaller than diesis,
kleisma is negative
31edo 1⁄4Β comma 2 3 1 1 Diesis is equal to kleisma
33c-edo 1⁄2Β comma 1 4 3 βˆ’2 Chromatic semitone is smaller than diesis,
kleisma is negative
43edo 1⁄5Β comma 3 4 1 2 Diesis is smaller than kleisma
55edo 1⁄6Β comma 4 5 1 3
50edo 2⁄7Β comma 3 5 2 1 Diesis is larger than kleisma

In 33c-edo, 5/4 is mapped to 10\33 = 364β€―Β’ instead of 11\33 = 400β€―Β’.

9-odd-limit intervals and their notation relative to C:

Note C G F E A Eβ™­ Aβ™­ Aβ™―
B♭↓
Dβ™―
E♭↓
Fβ™―
G♭↓
E
D↓
B
A↓
Gβ™­
F♯↓
D Bβ™­ Fβ™­
E↑
Gβ™―
A♭↓
Just interval ⁠1/1⁠ ⁠3/2⁠ ⁠4/3⁠ ⁠5/4⁠ ⁠5/3⁠ ⁠6/5⁠ ⁠8/5⁠ ⁠7/4⁠ ⁠7/6⁠ ⁠7/5⁠ ⁠8/7⁠ ⁠12/7⁠ ⁠10/7⁠ ⁠9/8⁠ ⁠10/9⁠ ⁠9/5⁠ ⁠16/9⁠ ⁠9/7⁠ ⁠14/9⁠

Two dieses or two kleismas cannot be stacked to produce a chromatic semitone except in 31edo, and notation for 11-limit and 13-limit intervals (intervals involving the 11th harmonic and 13th harmonic) can vary.

True half-sharps and half-flats

If sharps raise by an even number of edosteps, such as 24-tone equal temperament (quarter tones) and 31-tone equal temperament (approximately extended quarter-comma meantone), they (along with flats) can be split in half. Thus, some notes can be notated using semisharps and semiflats, or with ups and downs.

For example, in 31 equal, the chromatic scale becomes:

Cβ€Šβ€”β€ŠDπ„«β€Šβ€”β€ŠCβ™―β€Šβ€”β€ŠDβ™­β€Šβ€”β€ŠCπ„ͺβ€Šβ€”β€ŠDβ€Šβ€”β€ŠEπ„«β€Šβ€”β€ŠDβ™―β€Šβ€”β€ŠEβ™­β€Šβ€”β€ŠDπ„ͺβ€Šβ€”β€ŠEβ€Šβ€”β€ŠFβ™­β€Šβ€”β€ŠEβ™―β€Šβ€”β€ŠFβ€Šβ€”β€ŠGπ„«β€Šβ€”β€ŠFβ™―β€Šβ€”β€ŠGβ™­β€Šβ€”β€ŠFπ„ͺβ€Šβ€”β€ŠGβ€Šβ€”β€ŠAπ„«β€Šβ€”β€ŠGβ™―β€Šβ€”β€ŠAβ™­β€Šβ€”β€ŠGπ„ͺβ€Šβ€”β€ŠAβ€Šβ€”β€ŠBπ„«β€Šβ€”β€ŠAβ™―β€Šβ€”β€ŠBβ™­β€Šβ€”β€ŠAπ„ͺβ€Šβ€”β€ŠBβ€Šβ€”β€ŠCβ™­β€Šβ€”β€ŠBβ™―β€Šβ€”β€ŠC

Note that the base note letters alternate.

Using semisharps and semiflats, this can be re-written as:

Cβ€Šβ€”β€ŠCβ β€Šβ  β€Šβ€”β€ŠCβ™―β€Šβ€”β€ŠDβ™­β€Šβ€”β€ŠDβ β€Šβ  β€Šβ€”β€ŠDβ€Šβ€”β€ŠDβ β€Šβ  β€Šβ€”β€ŠDβ™―β€Šβ€”β€ŠEβ™­β€Šβ€”β€ŠEβ β€Šβ  β€Šβ€”β€ŠEβ€Šβ€”β€ŠEβ β€Šβ  β€Šβ€”β€ŠFβ β€Šβ  β€Šβ€”β€ŠFβ€Šβ€”β€ŠFβ β€Šβ  β€Šβ€”β€ŠFβ™―β€Šβ€”β€ŠGβ™­β€Šβ€”β€ŠGβ β€Šβ  β€Šβ€”β€ŠGβ€Šβ€”β€ŠGβ β€Šβ  β€Šβ€”β€ŠGβ™―β€Šβ€”β€ŠAβ™­β€Šβ€”β€ŠAβ β€Šβ  β€Šβ€”β€ŠAβ€Šβ€”β€ŠAβ β€Šβ  β€Šβ€”β€ŠAβ™―β€Šβ€”β€ŠBβ™­β€Šβ€”β€ŠBβ β€Šβ  β€Šβ€”β€ŠBβ€Šβ€”β€ŠBβ β€Šβ  β€Šβ€”β€ŠCβ β€Šβ  β€Šβ€”β€ŠC


View β€’ Talk β€’ EditMusical notation
Universal Sagittal notation
Just intonation Functional Just System β€’ Ben Johnston's notation (Johnston–Copper notation) β€’ Helmholtz–Ellis notation β€’ Color notation
MOS scales Diamond-mos notation β€’ KISS notation (Quasi-diatonic MOS notation)
Temperaments Circle-of-fifths notation β€’ Ups and downs notation (alternative symbols) β€’ Syntonic–rastmic subchroma notation β€’ Extended meantone notation β€’ Fractional sharp notation
See musical notation for a longer list of systems by category. See Category:Notation for the most complete, comprehensive list, but not sorted by category.