71zpi
71 zeta peak index (abbreviated 71zpi), is the equal-step tuning system obtained from the 71st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 0.613581 | 12.986080 | 20edo | 1186.65961344942 | 6 | 6 |

Theory
71zpi marks the most prominent zeta peak index in the vicinity of 20edo. While 70zpi is the nearest peak to 20edo and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of 32edt, a no-2s zeta peak EDT (consistent in the no-2s 21-throdd-limit), but with less extreme stretch than the no-2s peak at 59.271105 cents.
71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of 20edo.
The nearest zeta peaks to 71zpi that surpass its strength are 65zpi and 75zpi.
71zpi is distinguished by its extensive EDO-deviation and substantial zeta strength, qualifying it as a strong candidate for no-octave tuning systems. It is noteworthy that only 19zpi exhibits both a greater octave error and stronger zeta height and integral than 71zpi, although 71zpi still has a more pronounced zeta gap. Other notable zeta peak indices in this category include 61zpi, 84zpi, 110zpi, 137zpi, 151zpi, 222zpi, and 273zpi, each demonstrating characteristics that make them suitable for similar applications.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -13.3 | -3.3 | -26.7 | +2.3 | -16.6 | +13.2 | +19.3 | -6.6 | -11.0 | +2.0 | +29.4 | +9.4 | -0.2 | -1.0 | +6.0 |
Relative (%) | -22.5 | -5.6 | -45.0 | +3.9 | -28.0 | +22.2 | +32.5 | -11.1 | -18.5 | +3.4 | +49.5 | +15.9 | -0.3 | -1.6 | +10.1 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.7 | -19.9 | +5.1 | -24.3 | +9.9 | -11.3 | -29.0 | +16.0 | +4.7 | -3.9 | -9.9 | -13.5 | -14.9 | -14.3 | -11.7 | -7.4 | -1.3 |
Relative (%) | +33.2 | -33.6 | +8.6 | -41.0 | +16.6 | -19.1 | -48.8 | +27.0 | +7.9 | -6.6 | -16.7 | -22.8 | -25.2 | -24.1 | -19.8 | -12.4 | -2.2 | |
Step | 83 | 84 | 86 | 87 | 89 | 90 | 91 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
Intervals
There are multiple ways to approach notation. The simplest method is to use the notations from 20edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. If maintaining accurate step compression in notation software is important, consider using the ups and downs notation from 182edo at every 9-degree step. With this method, the tonal difference will be less than 1 cent up to the 86th harmonic.
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 30 steps Limma = 16 steps Apotome = 14 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.333 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | v7m2 | 9 |
2 | 118.666 | 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | ^^m2 | 18 |
3 | 177.999 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vvvM2 | 27 |
4 | 237.332 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6 | ^6M2 | 36 |
5 | 296.665 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 45 |
6 | 355.998 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | v6M3 | 54 |
7 | 415.331 | 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^^M3 | 63 |
8 | 474.664 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3 | v44 | 72 |
9 | 533.997 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21, 18/13 | ^54 | 81 |
10 | 593.330 | 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | A4 | 90 |
11 | 652.663 | 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ~5 | 99 |
12 | 711.996 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^^5 | 108 |
13 | 771.329 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17 | v5m6 | 117 |
14 | 830.662 | 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^4m6 | 126 |
15 | 889.995 | 28/17, 5/3, 32/19, 27/16, 22/13, 17/10 | vM6 | 135 |
16 | 949.328 | 29/17, 12/7, 31/18, 19/11, 26/15, 7/4 | v6A6, ^6d7 | 144 |
17 | 1008.661 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | ^m7 | 153 |
18 | 1067.994 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | v4M7 | 162 |
19 | 1127.327 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | ^5M7 | 171 |
20 | 1186.660 | 2/1 | vv1 +1 oct | 180 |
21 | 1245.993 | 31/15, 29/14, 27/13, 25/12 | ^71 +1 oct | 189 |
22 | 1305.326 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | m2 +1 oct | 198 |
23 | 1364.659 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | v5M2 +1 oct | 207 |
24 | 1423.992 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^4M2 +1 oct | 216 |
25 | 1483.325 | 7/3, 26/11, 19/8, 31/13 | vvvm3 +1 oct | 225 |
26 | 1542.657 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^6m3 +1 oct | 234 |
27 | 1601.990 | 5/2, 28/11, 23/9 | ^M3 +1 oct | 243 |
28 | 1661.323 | 18/7, 31/12, 13/5, 21/8, 29/11 | v64 +1 oct | 252 |
29 | 1720.656 | 8/3, 27/10, 19/7, 30/11 | ^^^4 +1 oct | 261 |
30 | 1779.989 | 11/4, 25/9, 14/5, 31/11, 17/6 | vvA4 +1 oct | 270 |
31 | 1839.322 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^5d5 +1 oct | 279 |
32 | 1898.655 | 3/1 | P5 +1 oct | 288 |
33 | 1957.988 | 31/10, 28/9, 25/8, 22/7 | v7m6 +1 oct | 297 |
34 | 2017.321 | 19/6, 16/5, 29/9, 13/4 | ^^m6 +1 oct | 306 |
35 | 2076.654 | 23/7, 10/3, 27/8 | vvvM6 +1 oct | 315 |
36 | 2135.987 | 17/5, 24/7, 31/9 | ^6M6 +1 oct | 324 |
37 | 2195.320 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 333 |
38 | 2254.653 | 29/8, 11/3, 26/7 | v6M7 +1 oct | 342 |
39 | 2313.986 | 15/4, 19/5, 23/6, 27/7 | ^^^M7 +1 oct | 351 |
40 | 2373.319 | 31/8, 4/1 | v41 +2 oct | 360 |
41 | 2432.652 | 29/7 | ^51 +2 oct | 369 |
42 | 2491.985 | 25/6, 21/5, 17/4, 30/7 | vvm2 +2 oct | 378 |
43 | 2551.318 | 13/3, 22/5, 31/7 | ~2 +2 oct | 387 |
44 | 2610.651 | 9/2, 32/7 | ^^M2 +2 oct | 396 |
45 | 2669.984 | 23/5, 14/3, 19/4 | v5m3 +2 oct | 405 |
46 | 2729.317 | 24/5, 29/6 | ^4m3 +2 oct | 414 |
47 | 2788.650 | 5/1 | vM3 +2 oct | 423 |
48 | 2847.983 | 31/6, 26/5, 21/4 | v6A3 +2 oct, ^6d4 +2 oct | 432 |
49 | 2907.316 | 16/3, 27/5 | ^4 +2 oct | 441 |
50 | 2966.649 | 11/2, 28/5 | v4A4 +2 oct | 450 |
51 | 3025.982 | 17/3, 23/4, 29/5 | ^^^d5 +2 oct | 459 |
52 | 3085.315 | 6/1 | vv5 +2 oct | 468 |
53 | 3144.648 | 31/5, 25/4 | ^75 +2 oct | 477 |
54 | 3203.981 | 19/3, 32/5 | m6 +2 oct | 486 |
55 | 3263.314 | 13/2, 20/3 | v5M6 +2 oct | 495 |
56 | 3322.647 | 27/4 | ^4M6 +2 oct | 504 |
57 | 3381.980 | 7/1 | vvvm7 +2 oct | 513 |
58 | 3441.313 | 29/4, 22/3 | ^6m7 +2 oct | 522 |
59 | 3500.646 | 15/2, 23/3 | ^M7 +2 oct | 531 |
60 | 3559.979 | 31/4 | v61 +3 oct | 540 |
61 | 3619.312 | 8/1 | ^^^1 +3 oct | 549 |
62 | 3678.645 | 25/3, 17/2 | v4m2 +3 oct | 558 |
63 | 3737.978 | 26/3 | ^5m2 +3 oct | 567 |
64 | 3797.311 | 9/1 | M2 +3 oct | 576 |
65 | 3856.644 | 28/3 | v7m3 +3 oct | 585 |
66 | 3915.977 | 19/2, 29/3 | ^^m3 +3 oct | 594 |
67 | 3975.310 | 10/1 | vvvM3 +3 oct | 603 |
68 | 4034.643 | 31/3 | ^6M3 +3 oct | 612 |
69 | 4093.976 | 21/2, 32/3 | v4 +3 oct | 621 |
70 | 4153.309 | 11/1 | v6A4 +3 oct | 630 |
71 | 4212.642 | 23/2 | ^d5 +3 oct | 639 |
72 | 4271.975 | v45 +3 oct | 648 | |
73 | 4331.308 | 12/1 | ^55 +3 oct | 657 |
74 | 4390.641 | 25/2 | vvm6 +3 oct | 666 |
75 | 4449.974 | 13/1 | ~6 +3 oct | 675 |
76 | 4509.307 | 27/2 | ^^M6 +3 oct | 684 |
77 | 4568.640 | 14/1 | v5m7 +3 oct | 693 |
78 | 4627.972 | 29/2 | ^4m7 +3 oct | 702 |
79 | 4687.305 | 15/1 | vM7 +3 oct | 711 |
80 | 4746.638 | 31/2 | v6A7 +3 oct, ^6d1 +4 oct | 720 |
81 | 4805.971 | 16/1 | ^1 +4 oct | 729 |
82 | 4865.304 | v6m2 +4 oct | 738 | |
83 | 4924.637 | 17/1 | ^^^m2 +4 oct | 747 |
84 | 4983.970 | 18/1 | vvM2 +4 oct | 756 |
85 | 5043.303 | ^7M2 +4 oct | 765 | |
86 | 5102.636 | 19/1 | m3 +4 oct | 774 |
87 | 5161.969 | 20/1 | v5M3 +4 oct | 783 |
88 | 5221.302 | ^4M3 +4 oct | 792 | |
89 | 5280.635 | 21/1 | vvv4 +4 oct | 801 |
90 | 5339.968 | 22/1 | ^64 +4 oct | 810 |
91 | 5399.301 | 23/1 | ^A4 +4 oct, vd5 +4 oct | 819 |
92 | 5458.634 | v65 +4 oct | 828 | |
93 | 5517.967 | 24/1 | ^^^5 +4 oct | 837 |
94 | 5577.300 | 25/1 | v4m6 +4 oct | 846 |
95 | 5636.633 | 26/1 | ^5m6 +4 oct | 855 |
96 | 5695.966 | 27/1 | M6 +4 oct | 864 |
97 | 5755.299 | 28/1 | v7m7 +4 oct | 873 |
98 | 5814.632 | 29/1 | ^^m7 +4 oct | 882 |
99 | 5873.965 | 30/1 | vvvM7 +4 oct | 891 |
100 | 5933.298 | 31/1 | ^6M7 +4 oct | 900 |
101 | 5992.631 | 32/1 | v1 +5 oct | 909 |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 71zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | +0.186 | +0.314 |
11/5 | +0.346 | +0.583 |
17/8 | -0.370 | -0.624 |
31/22 | +0.388 | +0.654 |
21/13 | -0.408 | -0.688 |
25/19 | +0.451 | +0.759 |
26/3 | +0.595 | +1.003 |
30/29 | -0.641 | -1.081 |
31/10 | +0.733 | +1.236 |
32/9 | +0.770 | +1.297 |
15/14 | +0.777 | +1.309 |
19/16 | +0.848 | +1.429 |
15/1 | +0.963 | +1.623 |
23/12 | -1.007 | -1.698 |
27/10 | -1.105 | -1.863 |
25/16 | +1.299 | +2.189 |
29/28 | +1.418 | +2.390 |
27/22 | -1.451 | -2.445 |
31/2 | -1.603 | -2.702 |
29/2 | +1.605 | +2.705 |
29/6 | -1.695 | -2.857 |
31/28 | -1.789 | -3.016 |
31/27 | +1.839 | +3.099 |
11/1 | -1.991 | -3.355 |
14/11 | +2.177 | +3.669 |
23/4 | +2.292 | +3.864 |
5/1 | -2.336 | -3.938 |
14/5 | +2.523 | +4.252 |
32/27 | -2.530 | -4.264 |
31/30 | -2.566 | -4.325 |
25/11 | -2.682 | -4.520 |
26/9 | -2.705 | -4.559 |
19/5 | -2.787 | -4.697 |
24/7 | -2.858 | -4.817 |
26/15 | +2.931 | +4.940 |
15/11 | +2.954 | +4.979 |
14/3 | -3.113 | -5.247 |
19/11 | -3.133 | -5.280 |
31/29 | -3.208 | -5.406 |
3/1 | +3.300 | +5.561 |
27/2 | -3.442 | -5.800 |
16/13 | +3.474 | +5.856 |
29/22 | +3.595 | +6.060 |
28/27 | +3.628 | +6.115 |
16/5 | -3.635 | -6.127 |
24/17 | +3.670 | +6.185 |
13/7 | +3.708 | +6.250 |
21/16 | -3.883 | -6.544 |
26/1 | +3.894 | +6.564 |
29/10 | +3.941 | +6.642 |
16/11 | -3.981 | -6.709 |
32/3 | +4.069 | +6.858 |
19/13 | +4.323 | +7.285 |
32/31 | -4.369 | -7.363 |
10/9 | +4.405 | +7.424 |
23/20 | +4.629 | +7.801 |
25/1 | -4.673 | -7.875 |
21/19 | -4.731 | -7.974 |
22/9 | +4.750 | +8.006 |
25/13 | +4.773 | +8.045 |
25/14 | -4.859 | -8.190 |
31/6 | -4.903 | -8.263 |
29/18 | -4.995 | -8.418 |
29/27 | +5.046 | +8.505 |
19/1 | -5.123 | -8.635 |
31/9 | +5.138 | +8.660 |
25/21 | +5.182 | +8.733 |
11/3 | -5.290 | -8.916 |
19/14 | -5.310 | -8.949 |
5/3 | -5.636 | -9.499 |
26/11 | +5.885 | +9.919 |
16/1 | -5.971 | -10.064 |
27/26 | +6.004 | +10.120 |
19/15 | -6.087 | -10.258 |
8/7 | -6.158 | -10.378 |
26/5 | +6.231 | +10.502 |
32/15 | +6.406 | +10.796 |
14/9 | -6.413 | -10.808 |
17/7 | -6.528 | -11.002 |
24/13 | -6.566 | -11.067 |
9/1 | +6.599 | +11.122 |
9/2 | -6.741 | -11.362 |
28/9 | +6.928 | +11.676 |
16/15 | -6.935 | -11.688 |
13/5 | -7.110 | -11.982 |
16/7 | +7.183 | +12.106 |
32/1 | +7.369 | +12.420 |
13/11 | -7.455 | -12.565 |
21/5 | -7.518 | -12.671 |
32/29 | -7.576 | -12.769 |
10/3 | +7.704 | +12.985 |
31/26 | +7.843 | +13.219 |
21/11 | -7.864 | -13.253 |
25/3 | -7.972 | -13.437 |
19/7 | +8.031 | +13.535 |
22/3 | +8.050 | +13.568 |
31/18 | -8.202 | -13.824 |
29/9 | +8.346 | +14.066 |
19/3 | -8.423 | -14.196 |
31/3 | +8.438 | +14.221 |
25/7 | +8.481 | +14.294 |
26/25 | +8.567 | +14.439 |
11/9 | -8.590 | -14.478 |
9/5 | +8.936 | +15.060 |
26/19 | +9.018 | +15.199 |
23/18 | +9.033 | +15.225 |
16/3 | -9.271 | -15.625 |
32/11 | +9.360 | +15.775 |
29/20 | -9.399 | -15.842 |
13/1 | -9.446 | -15.920 |
21/8 | +9.457 | +15.940 |
14/13 | +9.632 | +16.234 |
17/12 | +9.671 | +16.299 |
32/5 | +9.705 | +16.357 |
27/14 | +9.712 | +16.369 |
21/17 | +9.828 | +16.563 |
21/1 | -9.854 | -16.609 |
13/8 | +9.866 | +16.628 |
27/1 | +9.899 | +16.684 |
3/2 | -10.041 | -16.923 |
28/3 | +10.227 | +17.237 |
17/13 | -10.236 | -17.252 |
22/15 | +10.386 | +17.505 |
15/13 | +10.409 | +17.544 |
23/17 | -10.678 | -17.997 |
31/15 | +10.774 | +18.159 |
7/5 | -10.818 | -18.232 |
24/19 | -10.889 | -18.352 |
10/1 | +11.004 | +18.546 |
23/8 | -11.048 | -18.620 |
29/26 | +11.051 | +18.625 |
11/7 | +11.163 | +18.815 |
25/9 | -11.272 | -18.998 |
25/24 | +11.339 | +19.112 |
22/1 | +11.350 | +19.129 |
31/14 | +11.551 | +19.468 |
29/3 | +11.645 | +19.627 |
19/9 | -11.723 | -19.757 |
29/4 | -11.736 | -19.779 |
31/1 | +11.738 | +19.782 |
27/11 | +11.890 | +20.039 |
32/25 | +12.042 | +20.295 |
27/5 | +12.235 | +20.621 |
23/6 | +12.333 | +20.786 |
15/2 | -12.377 | -20.860 |
32/19 | +12.492 | +21.055 |
28/15 | +12.564 | +21.175 |
16/9 | -12.571 | -21.187 |
31/20 | -12.607 | -21.248 |
13/3 | -12.746 | -21.481 |
17/4 | +12.970 | +21.860 |
11/10 | -12.995 | -21.901 |
7/1 | -13.154 | -22.170 |
2/1 | +13.340 | +22.484 |
28/1 | +13.527 | +22.798 |
24/5 | -13.676 | -23.049 |
22/5 | +13.686 | +23.067 |
17/16 | -13.711 | -23.108 |
31/11 | +13.728 | +23.138 |
26/21 | +13.749 | +23.172 |
29/15 | +13.982 | +23.565 |
24/11 | -14.021 | -23.632 |
29/23 | -14.028 | -23.643 |
31/5 | +14.074 | +23.720 |
15/7 | +14.117 | +23.793 |
19/8 | +14.188 | +23.913 |
30/1 | +14.304 | +24.107 |
24/23 | +14.348 | +24.182 |
27/20 | -14.446 | -24.347 |
19/17 | +14.559 | +24.537 |
27/25 | +14.572 | +24.559 |
25/8 | +14.639 | +24.673 |
30/23 | -14.669 | -24.724 |
29/14 | +14.759 | +24.874 |
31/4 | -14.943 | -25.185 |
29/1 | +14.945 | +25.189 |
25/17 | +15.009 | +25.297 |
27/19 | +15.022 | +25.318 |
29/12 | -15.035 | -25.341 |
20/17 | -15.307 | -25.798 |
11/2 | -15.331 | -25.839 |
28/23 | -15.446 | -26.033 |
28/11 | +15.517 | +26.153 |
23/2 | +15.633 | +26.347 |
5/2 | -15.677 | -26.422 |
28/5 | +15.863 | +26.736 |
27/16 | +15.870 | +26.748 |
24/1 | -16.012 | -26.987 |
25/22 | -16.022 | -27.004 |
13/9 | -16.045 | -27.043 |
19/10 | -16.127 | -27.181 |
12/7 | -16.199 | -27.301 |
30/11 | +16.294 | +27.463 |
31/25 | +16.410 | +27.658 |
7/3 | -16.454 | -27.731 |
22/19 | +16.473 | +27.764 |
6/1 | +16.640 | +28.045 |
27/4 | -16.782 | -28.284 |
32/13 | +16.815 | +28.340 |
31/19 | +16.861 | +28.417 |
29/11 | +16.936 | +28.544 |
8/5 | -16.975 | -28.610 |
26/7 | +17.048 | +28.734 |
23/7 | -17.206 | -28.999 |
32/21 | +17.223 | +29.028 |
31/23 | -17.236 | -29.049 |
29/5 | +17.281 | +29.126 |
11/8 | +17.321 | +29.193 |
17/5 | -17.346 | -29.234 |
23/22 | +17.623 | +29.703 |
17/11 | -17.691 | -29.817 |
31/16 | +17.709 | +29.847 |
20/9 | +17.745 | +29.908 |
23/10 | +17.969 | +30.285 |
25/2 | -18.013 | -30.359 |
28/25 | +18.200 | +30.674 |
31/12 | -18.243 | -30.747 |
19/2 | -18.464 | -31.119 |
11/6 | -18.631 | -31.400 |
28/19 | +18.650 | +31.433 |
6/5 | +18.976 | +31.983 |
27/23 | -19.074 | -32.148 |
8/1 | -19.312 | -32.548 |
27/13 | +19.345 | +32.604 |
30/19 | +19.427 | +32.742 |
7/4 | +19.498 | +32.862 |
29/25 | +19.618 | +33.064 |
17/1 | -19.682 | -33.172 |
18/17 | -19.711 | -33.222 |
9/7 | +19.753 | +33.292 |
17/14 | -19.868 | -33.486 |
13/12 | +19.907 | +33.551 |
18/1 | +19.940 | +33.606 |
29/19 | +20.068 | +33.823 |
9/4 | -20.082 | -33.845 |
15/8 | +20.275 | +34.172 |
13/10 | -20.450 | -34.466 |
23/21 | -20.506 | -34.560 |
32/7 | +20.523 | +34.589 |
17/15 | -20.645 | -34.796 |
22/13 | +20.796 | +35.049 |
21/10 | -20.858 | -35.155 |
23/13 | -20.914 | -35.249 |
29/16 | +20.917 | +35.253 |
20/3 | +21.045 | +35.469 |
31/13 | +21.183 | +35.703 |
22/21 | +21.204 | +35.737 |
25/6 | -21.313 | -35.921 |
31/21 | +21.592 | +36.391 |
32/23 | -21.604 | -36.412 |
19/6 | -21.763 | -36.680 |
20/7 | -21.835 | -36.800 |
18/11 | +21.930 | +36.961 |
18/5 | +22.276 | +37.544 |
23/9 | +22.374 | +37.709 |
8/3 | -22.611 | -38.109 |
13/2 | -22.786 | -38.404 |
21/4 | +22.798 | +38.424 |
28/13 | +22.973 | +38.718 |
17/3 | -22.982 | -38.733 |
17/6 | +23.011 | +38.783 |
27/7 | +23.053 | +38.853 |
21/2 | -23.195 | -39.093 |
13/4 | +23.206 | +39.112 |
4/3 | +23.381 | +39.407 |
26/17 | +23.576 | +39.736 |
30/13 | +23.750 | +40.028 |
10/7 | +24.158 | +40.716 |
19/12 | +24.229 | +40.836 |
20/1 | +24.344 | +41.030 |
23/16 | -24.388 | -41.104 |
29/13 | +24.391 | +41.109 |
22/7 | +24.504 | +41.299 |
25/18 | -24.612 | -41.482 |
25/12 | +24.680 | +41.595 |
29/17 | -24.706 | -41.639 |
29/21 | +24.799 | +41.797 |
31/7 | +24.891 | +41.952 |
19/18 | -25.063 | -42.241 |
29/8 | -25.076 | -42.263 |
26/23 | -25.079 | -42.268 |
21/20 | +25.134 | +42.361 |
23/19 | -25.237 | -42.534 |
30/17 | -25.347 | -42.721 |
20/13 | -25.543 | -43.050 |
23/3 | +25.673 | +43.270 |
25/23 | +25.687 | +43.293 |
15/4 | -25.718 | -43.344 |
9/8 | +25.911 | +43.671 |
13/6 | -26.086 | -43.965 |
28/17 | -26.124 | -44.030 |
18/7 | -26.239 | -44.224 |
17/9 | -26.281 | -44.294 |
17/2 | +26.311 | +44.344 |
20/11 | +26.335 | +44.385 |
7/2 | -26.494 | -44.654 |
4/1 | +26.681 | +44.968 |
12/5 | -27.016 | -45.533 |
32/17 | +27.051 | +45.592 |
12/11 | -27.362 | -46.116 |
30/7 | +27.458 | +46.277 |
19/4 | +27.529 | +46.397 |
31/24 | +27.750 | +46.769 |
31/17 | -27.913 | -47.045 |
25/4 | +27.979 | +47.157 |
23/15 | +28.010 | +47.208 |
23/5 | -28.023 | -47.231 |
29/7 | +28.099 | +47.358 |
31/8 | -28.284 | -47.669 |
22/17 | -28.301 | -47.699 |
23/11 | -28.369 | -47.813 |
29/24 | -28.376 | -47.824 |
17/10 | +28.647 | +48.282 |
11/4 | -28.671 | -48.323 |
23/14 | +28.787 | +48.517 |
23/1 | +28.973 | +48.831 |
5/4 | -29.017 | -48.906 |
27/8 | +29.211 | +49.232 |
12/1 | -29.353 | -49.471 |
18/13 | +29.386 | +49.526 |
20/19 | +29.468 | +49.665 |
7/6 | +29.539 | +49.785 |
27/17 | +29.581 | +49.856 |
Record on the Riemann zeta function with prime 2 removed
71zpi sets a height record on the Riemann zeta function with prime 2 removed. The previous record is 53zpi and the next one is 93zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with prime 2 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
53zpi | 16.3979501311478 | 73.1798786069366 | 2.518818 | 16edo | 1170.87805771099 | 16.4044889390925 | 73.1507092025500 | 4.100909 | 16edo | 1170.41134724080 |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 20edo | 1186.65961344942 | 20.2459529213541 | 59.2711049295348 | 4.137236 | 20edo | 1185.42209859070 |
93zpi | 24.5782550666850 | 48.8236449961234 | 2.810487 | 25edo | 1220.59112490308 | 24.5738316304204 | 48.8324335434323 | 4.665720 | 25edo | 1220.81083858581 |
71zpi with prime 2 removed
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.6 | -5.3 | -29.2 | -0.6 | -19.9 | +9.6 | +15.5 | -10.6 | -15.1 | -2.3 | +24.8 | +4.8 | -5.0 | -5.9 | +1.0 |
Relative (%) | -24.6 | -8.9 | -49.2 | -1.0 | -33.5 | +16.2 | +26.2 | -17.8 | -25.6 | -3.9 | +41.9 | +8.1 | -8.4 | -9.9 | +1.6 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.5 | -25.1 | -0.2 | +29.5 | +4.3 | -16.9 | +24.7 | +10.3 | -1.1 | -9.8 | -15.8 | -19.5 | -21.0 | -20.4 | -17.9 | -13.6 | -7.6 | -0.0 |
Relative (%) | +24.5 | -42.4 | -0.3 | +49.8 | +7.3 | -28.5 | +41.6 | +17.3 | -1.9 | -16.5 | -26.7 | -32.9 | -35.4 | -34.5 | -30.2 | -23.0 | -12.9 | -0.1 | |
Step | 83 | 84 | 86 | 88 | 89 | 90 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |