Fractional-octave temperaments: Difference between revisions
→80th-octave temperaments: completion |
→80th-octave temperaments: renaming mercury to tetraicosic to make way for 320 & 1600 being named mercury |
||
Line 361: | Line 361: | ||
Badness: 0.036267 | Badness: 0.036267 | ||
== 80th-octave temperaments == | == 80th-octave temperaments == | ||
=== | === Tetraicosic === | ||
Tetraicosic is described as 720 & 1600, and named after the fact that 4 × 20 = 80, as a simpler temperament is already named octogintic. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 |
Revision as of 09:24, 4 November 2022
All temperaments on this page have a fractional-octave period, such as 1\26, 1\31, or 1\41.
Temperaments discussed elsewhere include:
- 1\2 period temperaments
- 1\3 period temperaments
- 1\4 period temperaments
- 1\5 period temperaments
- 1\6 period temperaments
- Akjaysmic temperaments (1\7 period)
- Octoid, octant (1\8 period)
- Tritrizo temperaments (1\9 period)
- Linus temperaments (1\10 period)
- Hendecatonic, undeka (1\11 period)
- Compton, atomic (1\12 period)
- Triskaidekic, tridecatonic, trideci (1\13 period)
- Pentadecal, quindecic (1\15 period)
- Hexadecoid, sedecic (1\16 period)
- Chlorine (1\17 period)
- Hemiennealimmal (1\18 period)
- Enneadecal, meanmag (1\19 period)
- Degrees (1\20 period)
- Akjayland (1\21 period)
- Icosidillic (1\22 period)
- Icositritonic (1\23 period)
- Hours (1\24 period)
- Chromium (1\24 period)
- Bosonic (1\26 period)
- Trinealimmal, cobalt (1\27 period)
- Oquatonic (1\28 period)
- Mystery (1\29 period)
- Birds (1\31 period)
- Windrose (1\32 period)
- Decades (1\36 period)
- Hemienneadecal (1\38 period)
- Counterpyth temperaments (1\41 period)
- Meridic (1\43 period)
- Palladium (1\46 period)
- Mercator temperaments (1\53 period)
- Omicronbeta (1\72 period)
- Octogintic (1\80 period)
- Garistearn (1\94 period)
- Undecentic (1\99 period)
- Schisennealimmal (1\171 period)
- Lunennealimmal (1\441 period)
14th-octave temperaments
While 14edo is poor in simple harmonics, some of its multiples (such as 224edo and 742edo) are members of zeta edo list.
Silicon
The name of silicon temperament comes from the 14th element. Defined upwards to the 13-limit. When tuned in 742edo, it is generated by a 53edo fifth intermingled with 14edo periods.
Subgroup: 2.3.5.7
Comma list: 14348907/14336000, 56358560858112/56296884765625
Mapping: [⟨14 0 -145 239], ⟨0 1 8 -9]]
Mapping generators: ~6125/5832, ~3
Optimal tuning (CTE): ~3/2 = 701.870
Badness: 0.196
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1240029/1239040, 2359296/2358125
Mapping: [⟨14 0 -145 239 115], ⟨0 1 8 -9 -3]]
Optimal tuning (CTE): ~3/2 = 701.872
Optimal GPV sequence: Template:Val list
Badness: 0.0450
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 6656/6655, 9801/9800, 24192/24167
Mapping: [⟨14 0 -145 239 115 74], ⟨0 1 8 -9 -3 -1]]
Optimal tuning (CTE): ~3/2 = 701.8733
Optimal GPV sequence: Template:Val list
Badness: 0.0269
37th-octave temperaments
37edo is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.
Rubidium
The name of rubidium temperament comes from Rubidium, the 37th element.
Subgroup: 2.3.5.7
Comma list: 3136/3125, 4194304/4117715
Mapping: [⟨37 0 86 104], ⟨0 1 0 0]]
Mapping generators: ~50/49, ~3
Optimal tuning (POTE): ~3/2 = 703.3903
Badness: 0.312105
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 1375/1372, 65536/65219
Mapping: [⟨37 0 86 104 128], ⟨0 1 0 0 0]]
Optimal tuning (POTE): ~3/2 = 703.0355
Optimal GPV sequence: Template:Val list
Badness: 0.101001
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 640/637, 847/845, 1375/1372
Mapping: [⟨37 0 86 104 128 137], ⟨0 1 0 0 0 0]]
Optimal tuning (POTE): ~3/2 = 703.0520
Optimal GPV sequence: Template:Val list
Badness: 0.048732
Triacontaheptoid
Subgroup: 2.3.5.7
Comma list: 244140625/242121642, 283115520/282475249
Mapping: [⟨37 2 67 85], ⟨0 3 1 1]]
Mapping generator: ~50/49, ~24000/16807
Optimal tuning (CTE): ~24000/16807 = 612.4003
Badness: 0.784746
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4000/3993, 226492416/226474325
Mapping: [⟨37 2 67 85 128], ⟨0 3 1 1 0]]
Optimal tuning (CTE): ~768/359 = 612.4003
Optimal GPV sequence: Template:Val list
Badness: 0.167327
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360
Mapping: [⟨37 2 67 85 128 118], ⟨0 3 1 1 0 1]]
Optimal tuning (CTE): ~462/325 = 612.4206
Optimal GPV sequence: Template:Val list
Badness: 0.076183
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264
Mapping: [⟨37 2 67 85 128 118 189], ⟨0 3 1 1 0 1 -2]]
Optimal tuning (CTE): ~121/85 = 612.4187
Optimal GPV sequence: Template:Val list
Badness: 0.052475
44th-octave temperaments
One step of 44edo is very close to the septimal comma, 64/63. The relationship is preserved even up thousands of edos.
Ruthenium
Ruthenium is named after the 44th element, and can be expressed as the 1848 & 2684 temperament.
Subgroup: 2.3.5.7
Comma list: [-8 23 -5 -6⟩, [51 -13 -1 -10⟩
Mapping: [⟨44 0 -386 263], ⟨0 1 7 -2]]
Mapping generators: ~64/63, ~3
Optimal tuning (CTE): ~3/2 = 701.9420
Badness: 0.111
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1771561/1771470, 67110351/67108864
Mapping: [⟨44 0 -386 263 -57], ⟨0 1 7 -2 3]]
Optimal tuning (CTE): ~3/2 = 701.9429
Optiml GPV sequence: Template:Val list
Badness: 0.0209
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 9801/9800, 196625/196608, 823680/823543, 1771561/1771470
Mapping: [⟨44 0 -386 263 -57 1976], ⟨0 1 7 -2 3 -26]]
Optimal tuning (CTE): ~3/2 = 701.939
Optiml GPV sequence: Template:Val list
Badness: 0.0396
56th-octave temperaments
Barium
One step of 56edo is close to a syntonic comma. Named after the 56th element, barium tempers out the [-225 224 -56⟩ comma, which sets 56 syntonic commas equal to the octave. It can be expressed as the 224 & 2072 temperament.
Subgroup: 2.3.5
Comma list: [-225 24 -56⟩
Mapping: [⟨56 0 -225], ⟨0 1 4]]
Mapping generators: ~81/80, ~3
Optimal tuning (CTE): ~3/2 = 701.9379
Badness: 4.70
7-limit
Subgroup: 2.3.5.7
Comma list: [-12 29 -11 -3⟩, [47 -7 -7 -7⟩
Mapping: [⟨56 0 -225 601], ⟨0 1 4 -5]]
Optimal tuning (CTE): ~3/2 = 701.9433
Badness: 0.227
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1019215872/1019046875, 14765025303/14763950080
Mapping: [⟨56 0 -225 601 460], ⟨0 1 4 5 -3]]
Optimal tuning (CTE): ~3/2 = 701.9431
Optimal GPV sequence: Template:Val list
Badness: 0.0345
65th-octave temperaments
65edo is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
Terbium
The name of terbium temperament comes from Terbium, the 65th element.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 78732/78125
Mapping: [⟨65 103 151 0], ⟨0 0 0 1]]
Mapping generators: ~81/80, ~7
Optimal tuning (POTE): ~7/4 = 969.1359
Badness: 0.169778
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 4000/3993, 5632/5625
Mapping: [⟨65 103 151 0 225], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~7/4 = 969.5715
Optimal GPV sequence: Template:Val list
Badness: 0.059966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 2080/2079, 3584/3575
Mapping: [⟨65 103 151 0 225 58], ⟨0 0 0 1 0 1]]
Optimal tuning (POTE): ~7/4 = 969.9612
Optimal GPV sequence: Template:Val list
Badness: 0.036267
80th-octave temperaments
Tetraicosic
Tetraicosic is described as 720 & 1600, and named after the fact that 4 × 20 = 80, as a simpler temperament is already named octogintic.
Subgroup: 2.3.5.7
Comma list: [-52 17 12 -1⟩, [25 42 -8 -26⟩
Mapping: [⟨80 1 343 -27], ⟨0 4 -5 8]]
Mapping generators: ~31637227888/31381059609, ~7381125/5619712
Optimal tuning (CTE): ~7381125/5619712 = 471.7339
Badness: 1.49
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 928760463360/928426965851, [49 -13 -14 -1 2⟩
Mapping: [⟨80 1 343 -27 434], ⟨0 4 -5 8 -5]]
Optimal tuning (CTE): ~2278125/1734656 = 471.7342
Optimal GPV sequence: Template:Val list
Badness: 0.178
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 9801/9800, 4100625/4100096, 14236560/14235529, 143327232/143286143
Mapping: [⟨80 1 343 -27 434 13], ⟨0 4 -5 8 -5 9]]
Optimal tuning (CTE): ~130/99 = 471.7322
Optimal GPV sequence: Template:Val list
Badness: 0.0741
91st-octave temperaments
Protactinium
Protactinium is described as the 364 & 1547 temperament and named after the 91st element.
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897
Mapping: [⟨91 0 644 -33 1036 481], ⟨0 1 -3 -2 -5 -1]]
Mapping generators: ~1728/1715, ~3
Optimal tuning (CTE): ~3/2 = 702.0195
Optimal GPV sequence: Template:Val list
Badness: 0.0777
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
Mapping: [⟨91 0 644 -33 1036 481 -205], ⟨0 1 -3 -2 -5 -1 4]]
Optimal tuning (CTE): ~3/2 = 702.0269
Optimal GPV sequence: Template:Val list
Badness: 0.0582
118th-octave temperaments
118edo is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.
Parakleischis
118edo and its multiples are members of both parakleismic and schismic, and from this it derives its name.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 1224440064/1220703125
Mapping: [⟨118 187 274 0], ⟨0 0 0 1]]
Mapping generators: ~15625/15552, ~7
Optimal tuning (POTE): ~7/4 = 968.7235
Badness: 0.145166
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 32805/32768, 137781/137500
Mapping: [⟨118 187 274 0 77], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~7/4 = 968.5117
Optimal GPV sequence: Template:Val list
Badness: 0.049316
Oganesson
Named after the 118th element, since a simpler temperament was already named. 82 periods plus a generator correspond to 13/8.
Subgroup: 2.3.5.7.11
Comma list: 32805/32768, 151263/151250, 1224440064/1220703125
Mapping: [⟨118 187 274 0 -420], ⟨0 0 0 2 5]]
Mapping generators: ~15625/15552, ~405504/153125
Optimal tuning (CTE): ~202752/153125 = 484.4837
Optimal GPV sequence: Template:Val list
Badness: 0.357
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 32805/32768, 34398/34375, 384912/384475
Mapping: [⟨118 187 274 0 -420 271], ⟨0 0 0 2 5 1]]
Optimal tuning (CTE): ~8125/6144 = 484.4867
Optimal GPV sequence: Template:Val list
Badness: 0.122