316edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Regular temperament properties: +link to unlit and simplify the ratio
+infobox and improve intro
Line 1: Line 1:
The '''316 equal divisions of the octave''' ('''316edo'''), or the '''316(-tone) equal temperament''' ('''316tet''', '''316et'''), divides the [[octave]] into 316 [[equal]] parts of 3.80 [[cent]]s each.  
{{Infobox ET
| Prime factorization = 2<sup>2</sup> × 79
| Step size = 3.79747¢
| Fifth = 189\316 (702.53¢)
| Semitones = 31:23 (117.72¢ : 87.34¢)
| Consistency = 11
}}
The '''316 equal divisions of the octave''' ('''316edo'''), or the '''316(-tone) equal temperament''' ('''316tet''', '''316et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 316 [[equal]] parts of about 3.80 [[cent]]s each.  


== Theory ==
== Theory ==
Line 6: Line 13:
It provides the [[optimal patent val]] for the rank-4 temperament tempering out 3388/3375, and [[triglav]], which also tempers out 3025/3024.
It provides the [[optimal patent val]] for the rank-4 temperament tempering out 3388/3375, and [[triglav]], which also tempers out 3025/3024.


316 factors into 2<sup>2</sup> × 79, with subset edos 2, 4, 79, and 158.  
316 factors into 2<sup>2</sup> × 79, with subset edos {{EDOs| 2, 4, 79, and 158 }}.  


=== Prime harmonics ===
=== Prime harmonics ===

Revision as of 00:02, 7 January 2022

← 315edo 316edo 317edo →
Prime factorization 22 × 79
Step size 3.79747 ¢ 
Fifth 185\316 (702.532 ¢)
Semitones (A1:m2) 31:23 (117.7 ¢ : 87.34 ¢)
Consistency limit 11
Distinct consistency limit 11

The 316 equal divisions of the octave (316edo), or the 316(-tone) equal temperament (316tet, 316et) when viewed from a regular temperament perspective, divides the octave into 316 equal parts of about 3.80 cents each.

Theory

While not highly accurate for its size, 316et is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out the parakleisma, [8 14 -13, the undim comma, [41 -20 -4, and the maquila comma, [49 -6 -17 in the 5-limit; 3136/3125, 4375/4374, 10976/10935 in the 7-limit; 3025/3024, 3388/3375, 9801/9800 and 14641/14580 in the 11-limit; and using the patent val, 1716/1715, 2080/2079 and 4096/4095 in the 13-limit; notably supporting abigail and semiparakleismic.

It provides the optimal patent val for the rank-4 temperament tempering out 3388/3375, and triglav, which also tempers out 3025/3024.

316 factors into 22 × 79, with subset edos 2, 4, 79, and 158.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [501 -316 [316 501]] -0.182 0.182 4.79
2.3.5 [8 14 -13, [41 -20 -4 [316 501 734]] -0.269 0.193 5.08
2.3.5.7 3136/3125, 4375/4374, [-26 -1 1 9 [316 501 734 887]] -0.160 0.252 6.64
2.3.5.7.11 3025/3024, 3136/3125, 4375/4374, 131072/130977 [316 501 734 887 1093]] -0.088 0.267 7.04
2.3.5.7.11.13 1716/1715, 2080/2079, 3025/3024, 3136/3125, 4096/4095 [316 501 734 887 1093 1169]] -0.016 0.293 7.72

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 51\316 193.67 28/25 Didacus
1 83\316 315.19 6/5 Parakleismic
1 84\316 322.78 3087/2560 Seniority
1 141\316 535.44 512/375 Maquila
2 55\316 208.86 44/39 Abigail
2 83\316
(75\316)
315.19
(284.81)
6/5
(33/28)
Semiparakleismic
4 131\316
(27\316)
497.47
(102.53)
4/3
(35/33)
Undim / unlit