Ragismic microtemperaments: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 11: | Line 11: | ||
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS. | If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 2401/2400, 4375/4374 | [[Comma list]]: 2401/2400, 4375/4374 | ||
Line 33: | Line 35: | ||
=== 11-limit === | === 11-limit === | ||
The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma). | The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma). | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 4375/4374, 5632/5625 | Comma list: 2401/2400, 4375/4374, 5632/5625 | ||
Line 45: | Line 49: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374 | Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374 | ||
Line 57: | Line 63: | ||
=== Ennealimmia === | === Ennealimmia === | ||
Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ''ennealimmia'' temperament (171&270, named by [[User:Xenllium|Xenllium]]). | Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ''ennealimmia'' temperament (171&270, named by [[User:Xenllium|Xenllium]]). | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 4375/4374, 131072/130977 | Comma list: 2401/2400, 4375/4374, 131072/130977 | ||
Line 69: | Line 77: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374 | Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374 | ||
Line 80: | Line 90: | ||
=== Ennealimnic === | === Ennealimnic === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 441/440, 4375/4356 | Comma list: 243/242, 441/440, 4375/4356 | ||
Line 96: | Line 108: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 243/242, 364/363, 441/440, 625/624 | Comma list: 243/242, 364/363, 441/440, 625/624 | ||
Line 112: | Line 126: | ||
===== 17-limit ===== | ===== 17-limit ===== | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594 | Comma list: 243/242, 364/363, 375/374, 441/440, 595/594 | ||
Line 128: | Line 144: | ||
==== Ennealim ==== | ==== Ennealim ==== | ||
Subgroup: 2.3.5.7.13 | |||
Comma list: 169/168, 243/242, 325/324, 441/440 | Comma list: 169/168, 243/242, 325/324, 441/440 | ||
Line 139: | Line 157: | ||
=== Ennealiminal === | === Ennealiminal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 1375/1372, 4375/4374 | Comma list: 385/384, 1375/1372, 4375/4374 | ||
Line 150: | Line 170: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 385/384, 1375/1372 | Comma list: 169/168, 325/324, 385/384, 1375/1372 | ||
Line 161: | Line 183: | ||
=== Hemiennealimmal === | === Hemiennealimmal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 3025/3024, 4375/4374 | Comma list: 2401/2400, 3025/3024, 4375/4374 | ||
Line 177: | Line 201: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024 | Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024 | ||
Line 193: | Line 219: | ||
==== Semihemiennealimmal ==== | ==== Semihemiennealimmal ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374 | Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374 | ||
Line 204: | Line 232: | ||
=== Semiennealimmal === | === Semiennealimmal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 4000/3993, 4375/4374 | Comma list: 2401/2400, 4000/3993, 4375/4374 | ||
Line 215: | Line 245: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374 | Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374 | ||
Line 226: | Line 258: | ||
=== Quadraennealimmal === | === Quadraennealimmal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 4375/4374, 234375/234256 | Comma list: 2401/2400, 4375/4374, 234375/234256 | ||
Line 237: | Line 271: | ||
=== Trinealimmal === | === Trinealimmal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 4375/4374, 2097152/2096325 | Comma list: 2401/2400, 4375/4374, 2097152/2096325 | ||
Line 248: | Line 284: | ||
== Gamera == | == Gamera == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 589824/588245 | [[Comma list]]: 4375/4374, 589824/588245 | ||
Line 261: | Line 299: | ||
=== Hemigamera === | === Hemigamera === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 589824/588245 | Comma list: 3025/3024, 4375/4374, 589824/588245 | ||
Line 272: | Line 312: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024 | Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024 | ||
Line 284: | Line 326: | ||
== Supermajor == | == Supermajor == | ||
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS. | The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 52734375/52706752 | [[Comma list]]: 4375/4374, 52734375/52706752 | ||
Line 298: | Line 342: | ||
=== Semisupermajor === | === Semisupermajor === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 35156250/35153041 | Comma list: 3025/3024, 4375/4374, 35156250/35153041 | ||
Line 310: | Line 356: | ||
== Enneadecal == | == Enneadecal == | ||
Enneadecal temperament tempers out the enneadeca, {{monzo|-14 -19 19}}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo|19EDO]] up to just ones. [[171edo|171EDO]] is a good tuning for either the 5 or 7 limits, and [[494edo|494EDO]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo|665EDO]] for a tuning. | Enneadecal temperament tempers out the enneadeca, {{monzo|-14 -19 19}}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo|19EDO]] up to just ones. [[171edo|171EDO]] is a good tuning for either the 5 or 7 limits, and [[494edo|494EDO]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo|665EDO]] for a tuning. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 703125/702464 | [[Comma list]]: 4375/4374, 703125/702464 | ||
Line 326: | Line 374: | ||
=== Hemienneadecal === | === Hemienneadecal === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 234375/234256 | Comma list: 3025/3024, 4375/4374, 234375/234256 | ||
Line 337: | Line 387: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213 | Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213 | ||
Line 349: | Line 401: | ||
== Deca == | == Deca == | ||
Deca temperament has a period of 1/10 octave and tempers out the [[15/14ths equal temperament #Linus temperaments|linus comma]], {{monzo|11 -10 -10 10}} and {{monzo|12 -3 -14 9}} = 165288374272/164794921875 (satritrizo-asepbigu). | Deca temperament has a period of 1/10 octave and tempers out the [[15/14ths equal temperament #Linus temperaments|linus comma]], {{monzo|11 -10 -10 10}} and {{monzo|12 -3 -14 9}} = 165288374272/164794921875 (satritrizo-asepbigu). | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 165288374272/164794921875 | [[Comma list]]: 4375/4374, 165288374272/164794921875 | ||
Line 363: | Line 417: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 422576/421875 | Comma list: 3025/3024, 4375/4374, 422576/421875 | ||
Line 374: | Line 430: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374 | Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374 | ||
Line 386: | Line 444: | ||
== Mitonic == | == Mitonic == | ||
{{see also|Minortonic family #Mitonic}} | {{see also|Minortonic family #Mitonic}} | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2100875/2097152 | [[Comma list]]: 4375/4374, 2100875/2097152 | ||
Line 400: | Line 460: | ||
== Sfourth == | == Sfourth == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 64827/64000 | [[Comma list]]: 4375/4374, 64827/64000 | ||
Line 413: | Line 475: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 441/440, 4375/4374 | Comma list: 121/120, 441/440, 4375/4374 | ||
Line 424: | Line 488: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 169/168, 325/324, 441/440 | Comma list: 121/120, 169/168, 325/324, 441/440 | ||
Line 435: | Line 501: | ||
=== Sfour === | === Sfour === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 2401/2376, 4375/4374 | Comma list: 385/384, 2401/2376, 4375/4374 | ||
Line 446: | Line 514: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 364/363, 385/384, 4375/4374 | Comma list: 196/195, 364/363, 385/384, 4375/4374 | ||
Line 457: | Line 527: | ||
== Abigail == | == Abigail == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2147483648/2144153025 | [[Comma list]]: 4375/4374, 2147483648/2144153025 | ||
Line 470: | Line 542: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 20614528/20588575 | Comma list: 3025/3024, 4375/4374, 20614528/20588575 | ||
Line 481: | Line 555: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095 | Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095 | ||
Line 493: | Line 569: | ||
== Semidimi == | == Semidimi == | ||
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo|-12 -73 55}} and 7-limit 3955078125/3954653486, as well as 4375/4374. | The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo|-12 -73 55}} and 7-limit 3955078125/3954653486, as well as 4375/4374. | ||
Subgroup: 2.3.5 | |||
[[Comma]]: {{monzo|-12 -73 55}} | [[Comma]]: {{monzo|-12 -73 55}} | ||
Line 505: | Line 583: | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 3955078125/3954653486 | [[Comma list]]: 4375/4374, 3955078125/3954653486 | ||
Line 519: | Line 599: | ||
== Brahmagupta == | == Brahmagupta == | ||
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo|47 -7 -7 -7}} = 140737488355328 / 140710042265625. | The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo|47 -7 -7 -7}} = 140737488355328 / 140710042265625. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 70368744177664/70338939985125 | [[Comma list]]: 4375/4374, 70368744177664/70338939985125 | ||
Line 533: | Line 615: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4000/3993, 4375/4374, 131072/130977 | Comma list: 4000/3993, 4375/4374, 131072/130977 | ||
Line 544: | Line 628: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374 | Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374 | ||
Line 556: | Line 642: | ||
== Quasithird == | == Quasithird == | ||
The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}. | The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}. | ||
Subgroup: 2.3.5 | |||
[[Comma]]: {{monzo|55 -64 20}} | [[Comma]]: {{monzo|55 -64 20}} | ||
Line 563: | Line 651: | ||
[[POTE generator]]: ~1594323/1280000 = 380.395 | [[POTE generator]]: ~1594323/1280000 = 380.395 | ||
{{Val list|legend=1| 60, 164, 224, 388, 612, 836, 1000, 1448, 1612, 2224, 2836 }} | |||
[[Badness]]: 0.099519 | [[Badness]]: 0.099519 | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 1153470752371588581/1152921504606846976 | [[Comma list]]: 4375/4374, 1153470752371588581/1152921504606846976 | ||
Line 576: | Line 666: | ||
[[POTE generator]]: ~5103/4096 = 380.388 | [[POTE generator]]: ~5103/4096 = 380.388 | ||
{{Val list|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }} | |||
[[Badness]]: 0.061813 | [[Badness]]: 0.061813 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296 | Comma list: 3025/3024, 4375/4374, 4296700485/4294967296 | ||
Line 592: | Line 684: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195 | Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195 | ||
Line 604: | Line 698: | ||
== Semidimfourth == | == Semidimfourth == | ||
The '''semidimifourth''' temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375. | The '''semidimifourth''' temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375. | ||
Subgroup: 2.3.5 | |||
[[Comma]]: {{monzo|7 41 -31}} | [[Comma]]: {{monzo|7 41 -31}} | ||
Line 611: | Line 707: | ||
[[POTE generator]]: ~162/125 = 448.449 | [[POTE generator]]: ~162/125 = 448.449 | ||
{{Val list|legend=1| 8, 91, 99, 190, 289, 388, 677, 3674, 4351, 5028, 5705, 6382, 13441c, 19823bcc }} | |||
[[Badness]]: 0.233376 | [[Badness]]: 0.233376 | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 235298/234375 | [[Comma list]]: 4375/4374, 235298/234375 | ||
Line 624: | Line 722: | ||
[[POTE generator]]: ~35/27 = 448.456 | [[POTE generator]]: ~35/27 = 448.456 | ||
{{Val list|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }} | |||
[[Badness]]: 0.055249 | [[Badness]]: 0.055249 | ||
=== Neusec === | === Neusec === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 235298/234375 | Comma list: 3025/3024, 4375/4374, 235298/234375 | ||
Line 640: | Line 740: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374 | Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374 | ||
Line 651: | Line 753: | ||
== Acrokleismic == | == Acrokleismic == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2202927104/2197265625 | [[Comma list]]: 4375/4374, 2202927104/2197265625 | ||
Line 659: | Line 763: | ||
[[POTE generator]]: ~6/5 = 315.557 | [[POTE generator]]: ~6/5 = 315.557 | ||
{{Val list|legend=1| 19, 251, 270 }} | |||
[[Badness]]: 0.056184 | [[Badness]]: 0.056184 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 41503/41472, 172032/171875 | Comma list: 4375/4374, 41503/41472, 172032/171875 | ||
Line 675: | Line 781: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976 | Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976 | ||
Line 686: | Line 794: | ||
=== Counteracro === | === Counteracro === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 5632/5625, 117649/117612 | Comma list: 4375/4374, 5632/5625, 117649/117612 | ||
Line 697: | Line 807: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374 | Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374 | ||
Line 709: | Line 821: | ||
== Seniority == | == Seniority == | ||
{{see also|Very high accuracy temperaments#Senior}} | {{see also|Very high accuracy temperaments#Senior}} | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 201768035/201326592 | [[Comma list]]: 4375/4374, 201768035/201326592 | ||
Line 718: | Line 832: | ||
[[POTE generator]]: ~3087/2560 = 322.804 | [[POTE generator]]: ~3087/2560 = 322.804 | ||
{{Val list|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }} | |||
[[Badness]]: 0.044877 | [[Badness]]: 0.044877 | ||
== Orga == | == Orga == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 54975581388800/54936068900769 | [[Comma list]]: 4375/4374, 54975581388800/54936068900769 | ||
Line 731: | Line 847: | ||
[[POTE generator]]: ~8/7 = 231.104 | [[POTE generator]]: ~8/7 = 231.104 | ||
{{Val list|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }} | |||
[[Badness]]: 0.040236 | [[Badness]]: 0.040236 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 5767168/5764801 | Comma list: 3025/3024, 4375/4374, 5767168/5764801 | ||
Line 747: | Line 865: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360 | Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360 | ||
Line 758: | Line 878: | ||
== Quatracot == | == Quatracot == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 1483154296875/1473173782528 | [[Comma list]]: 4375/4374, 1483154296875/1473173782528 | ||
Line 766: | Line 888: | ||
[[POTE generator]]: ~448/405 = 176.805 | [[POTE generator]]: ~448/405 = 176.805 | ||
{{Val list|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }} | |||
[[Badness]]: 0.175982 | [[Badness]]: 0.175982 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 1265625/1261568 | Comma list: 3025/3024, 4375/4374, 1265625/1261568 | ||
Line 782: | Line 906: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 625/624, 729/728, 1575/1573, 2200/2197 | Comma list: 625/624, 729/728, 1575/1573, 2200/2197 | ||
Line 794: | Line 920: | ||
== Octoid == | == Octoid == | ||
The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99. | The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 16875/16807 | [[Comma list]]: 4375/4374, 16875/16807 | ||
Line 810: | Line 938: | ||
* Diamond monotone and tradeoff: [582.512, 584.359] | * Diamond monotone and tradeoff: [582.512, 584.359] | ||
{{Val list|legend=1| 8d, 72, 152, 224 }} | |||
[[Badness]]: 0.042670 | [[Badness]]: 0.042670 | ||
Line 817: | Line 945: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 1375/1372, 4000/3993 | Comma list: 540/539, 1375/1372, 4000/3993 | ||
Line 835: | Line 965: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 1375/1372, 4000/3993, 625/624 | Comma list: 540/539, 1375/1372, 4000/3993, 625/624 | ||
Line 851: | Line 983: | ||
=== Octopus === | === Octopus === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 364/363, 540/539 | Comma list: 169/168, 325/324, 364/363, 540/539 | ||
Line 870: | Line 1,004: | ||
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)<sup>1/13</sup>, which gives pure major thirds. | In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)<sup>1/13</sup>, which gives pure major thirds. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 5120/5103 | [[Comma list]]: 4375/4374, 5120/5103 | ||
Line 884: | Line 1,020: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 4375/4374, 5120/5103 | Comma list: 540/539, 4375/4374, 5120/5103 | ||
Line 895: | Line 1,033: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 540/539, 625/624, 847/845 | Comma list: 352/351, 540/539, 625/624, 847/845 | ||
Line 907: | Line 1,047: | ||
=== Hitchcock === | === Hitchcock === | ||
{{see also|Amity family #Hitchcock}} | {{see also|Amity family #Hitchcock}} | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 176/175, 2200/2187 | Comma list: 121/120, 176/175, 2200/2187 | ||
Line 919: | Line 1,061: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 169/168, 176/175, 325/324 | Comma list: 121/120, 169/168, 176/175, 325/324 | ||
Line 930: | Line 1,074: | ||
=== Hemiamity === | === Hemiamity === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 5120/5103 | Comma list: 3025/3024, 4375/4374, 5120/5103 | ||
Line 944: | Line 1,090: | ||
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118. | In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118. | ||
Subgroup: 2.3.5 | |||
[[Comma list]]: 1224440064/1220703125 | [[Comma list]]: 1224440064/1220703125 | ||
Line 951: | Line 1,099: | ||
[[POTE generator]]: ~6/5 = 315.240 | [[POTE generator]]: ~6/5 = 315.240 | ||
{{Val list|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }} | |||
[[Badness]]: 0.043279 | [[Badness]]: 0.043279 | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 3136/3125, 4375/4374 | [[Comma list]]: 3136/3125, 4375/4374 | ||
Line 964: | Line 1,114: | ||
[[POTE generator]]: ~6/5 = 315.181 | [[POTE generator]]: ~6/5 = 315.181 | ||
{{Val list|legend=1| 19, 80, 99, 217, 316, 415 }} | |||
[[Badness]]: 0.027431 | [[Badness]]: 0.027431 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 3136/3125, 4375/4374 | Comma list: 385/384, 3136/3125, 4375/4374 | ||
Line 981: | Line 1,133: | ||
=== Paralytic === | === Paralytic === | ||
The ''paralytic'' temperament (118&217, named by [[User:FloraC|Flora Canou]]) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575. | The ''paralytic'' temperament (118&217, named by [[User:FloraC|Flora Canou]]) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575. | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 3136/3125, 4375/4374 | Comma list: 441/440, 3136/3125, 4375/4374 | ||
Line 993: | Line 1,147: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374 | Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374 | ||
Line 1,005: | Line 1,161: | ||
==== Paraklein ==== | ==== Paraklein ==== | ||
The ''paraklein'' temperament (19e&118, named by [[User:Xenllium|Xenllium]]) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]]. | The ''paraklein'' temperament (19e&118, named by [[User:Xenllium|Xenllium]]) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]]. | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 352/351, 625/624, 729/728 | Comma list: 196/195, 352/351, 625/624, 729/728 | ||
Line 1,017: | Line 1,175: | ||
=== Parkleismic === | === Parkleismic === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 176/175, 1375/1372, 2200/2187 | Comma list: 176/175, 1375/1372, 2200/2187 | ||
Line 1,028: | Line 1,188: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 176/175, 325/324, 1375/1372 | Comma list: 169/168, 176/175, 325/324, 1375/1372 | ||
Line 1,039: | Line 1,201: | ||
=== Paradigmic === | === Paradigmic === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 896/891, 3136/3125 | Comma list: 540/539, 896/891, 3136/3125 | ||
Line 1,050: | Line 1,214: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 540/539, 832/825 | Comma list: 169/168, 325/324, 540/539, 832/825 | ||
Line 1,061: | Line 1,227: | ||
=== Semiparakleismic === | === Semiparakleismic === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 3136/3125, 4375/4374 | Comma list: 3025/3024, 3136/3125, 4375/4374 | ||
Line 1,072: | Line 1,240: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374 | Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374 | ||
Line 1,083: | Line 1,253: | ||
==== Gentsemiparakleismic ==== | ==== Gentsemiparakleismic ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 364/363, 3136/3125 | Comma list: 169/168, 325/324, 364/363, 3136/3125 | ||
Line 1,097: | Line 1,269: | ||
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo|-20 -24 25}}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19&224 temperament (''counterkleismic'', named by [[User:Xenllium|Xenllium]]), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma). | In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo|-20 -24 25}}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19&224 temperament (''counterkleismic'', named by [[User:Xenllium|Xenllium]]), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma). | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 158203125/157351936 | [[Comma list]]: 4375/4374, 158203125/157351936 | ||
Line 1,106: | Line 1,280: | ||
[[POTE generator]]: ~6/5 = 316.060 | [[POTE generator]]: ~6/5 = 316.060 | ||
{{Val list|legend=1| 19, 205, 224, 243, 467 }} | |||
[[Badness]]: 0.090553 | [[Badness]]: 0.090553 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 4375/4374, 2097152/2096325 | Comma list: 540/539, 4375/4374, 2097152/2096325 | ||
Line 1,122: | Line 1,298: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 625/624, 729/728, 10985/10976 | Comma list: 540/539, 625/624, 729/728, 10985/10976 | ||
Line 1,133: | Line 1,311: | ||
=== Counterlytic === | === Counterlytic === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 1375/1372, 4375/4374, 496125/495616 | Comma list: 1375/1372, 4375/4374, 496125/495616 | ||
Line 1,144: | Line 1,324: | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 625/624, 729/728, 1375/1372, 10985/10976 | Comma list: 625/624, 729/728, 1375/1372, 10985/10976 | ||
Line 1,155: | Line 1,337: | ||
== Quincy == | == Quincy == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 823543/819200 | [[Comma list]]: 4375/4374, 823543/819200 | ||
Line 1,163: | Line 1,347: | ||
[[POTE generator]]: ~1728/1715 = 16.613 | [[POTE generator]]: ~1728/1715 = 16.613 | ||
{{Val list|legend=1| 72, 217, 289 }} | |||
[[Badness]]: 0.079657 | [[Badness]]: 0.079657 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 4000/3993, 4375/4374 | Comma list: 441/440, 4000/3993, 4375/4374 | ||
Line 1,179: | Line 1,365: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 441/440, 676/675, 4375/4374 | Comma list: 364/363, 441/440, 676/675, 4375/4374 | ||
Line 1,190: | Line 1,378: | ||
=== 17-limit === | === 17-limit === | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155 | Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155 | ||
Line 1,201: | Line 1,391: | ||
=== 19-limit === | === 19-limit === | ||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675 | Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675 | ||
Line 1,215: | Line 1,407: | ||
Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, {{monzo|-52 -17 34}}, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out {{monzo|-49 4 22 -3}} as well as the ragisma. | Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, {{monzo|-52 -17 34}}, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out {{monzo|-49 4 22 -3}} as well as the ragisma. | ||
Subgroup: 2.3.5 | |||
[[Comma]]: {{monzo|-52 -17 34}} | [[Comma]]: {{monzo|-52 -17 34}} | ||
Line 1,222: | Line 1,416: | ||
[[POTE tuning|POTE generators]]: ~25/24 = 70.5882, ~5/4 = 386.2687 | [[POTE tuning|POTE generators]]: ~25/24 = 70.5882, ~5/4 = 386.2687 | ||
{{Val list|legend=1| 34, 153, 187, 221, 255, 289, 323, 612, 3349, 3961, 4573, 5185, 5797 }} | |||
[[Badness]]: 0.077072 | [[Badness]]: 0.077072 | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 193119049072265625/193091834023510016 | [[Comma list]]: 4375/4374, 193119049072265625/193091834023510016 | ||
Line 1,235: | Line 1,431: | ||
[[POTE tuning|POTE generators]]: ~25/24 = 70.5882, ~5/4 = 386.2936 | [[POTE tuning|POTE generators]]: ~25/24 = 70.5882, ~5/4 = 386.2936 | ||
{{Val list|legend=1| 289, 323, 612, 935, 1547 }} | |||
[[Badness]]: 0.041658 | [[Badness]]: 0.041658 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 41503/41472, 1879453125/1879048192 | Comma list: 4375/4374, 41503/41472, 1879453125/1879048192 | ||
Line 1,254: | Line 1,452: | ||
Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo|-39 92 -46}}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out {{monzo|-51 8 2 12}} as well as the ragisma. | Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo|-39 92 -46}}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out {{monzo|-51 8 2 12}} as well as the ragisma. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2270317133144025/2251799813685248 | [[Comma list]]: 4375/4374, 2270317133144025/2251799813685248 | ||
Line 1,263: | Line 1,463: | ||
[[POTE generator]]: ~3/2 = 701.6074 | [[POTE generator]]: ~3/2 = 701.6074 | ||
{{Val list|legend=1| 46, 368, 414, 460, 874d }} | |||
[[Badness]]: 0.308505 | [[Badness]]: 0.308505 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 9801/9800, 134775333/134217728 | Comma list: 3025/3024, 9801/9800, 134775333/134217728 | ||
Line 1,279: | Line 1,481: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364 | Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364 | ||
Line 1,290: | Line 1,494: | ||
=== 17-limit === | === 17-limit === | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | ||
Line 1,302: | Line 1,508: | ||
== Monzism == | == Monzism == | ||
The ''monzism'' temperament (53&612, named by [[User:Xenllium|Xenllium]]) is a rank-two temperament which tempers out the [[monzisma]], {{monzo|54 -37 2}} and the [[nanisma]], {{monzo|109 -67 0 -1}}, as well as the ragisma, [[4375/4374]]. | The ''monzism'' temperament (53&612, named by [[User:Xenllium|Xenllium]]) is a rank-two temperament which tempers out the [[monzisma]], {{monzo|54 -37 2}} and the [[nanisma]], {{monzo|109 -67 0 -1}}, as well as the ragisma, [[4375/4374]]. | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 36030948116563575/36028797018963968 | [[Comma list]]: 4375/4374, 36030948116563575/36028797018963968 | ||
Line 1,311: | Line 1,519: | ||
[[POTE generator]]: ~310078125/268435456 = 249.0207 | [[POTE generator]]: ~310078125/268435456 = 249.0207 | ||
{{Val list|legend=1| 53, 559, 612, 1277, 1889 }} | |||
[[Badness]]: 0.046569 | [[Badness]]: 0.046569 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 41503/41472, 184549376/184528125 | Comma list: 4375/4374, 41503/41472, 184549376/184528125 | ||
Line 1,327: | Line 1,537: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625 | Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625 | ||
Revision as of 12:52, 3 June 2021
The ragisma is 4375/4374 with a monzo of [-1 -7 4 1⟩, the smallest 7-limit superparticular ratio. Since (10/9)^4 = 4375/4374 * 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 * (27/25)^2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
Temperaments not discussed here include crepuscular, flattone, hystrix, sensi, unidec, quartonic, catakleismic, modus, maja, pontiac, trillium, whirrschmidt, zarvo, vishnu, and vulture.
Ennealimmal
Ennealimmal temperament tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimmal comma, [1 -27 18⟩, which leads to the identification of (27/25)^9 with the octave, and gives ennealimmal a period of 1/9 octave. While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. Its wedgie is ⟨⟨ 18 27 18 1 -22 -34 ]].
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 and 60/49, all of which have their own interesting advantages. Possible tunings are 441, 612, or 3600 EDOs, though its hardly likely anyone could tell the difference.
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12], ⟨0 2 3 2]]
Wedgie: ⟨⟨ 18 27 18 1 -22 -34 ]]
Mapping generators: ~27/25, ~5/3
POTE generators: ~36/35 = 49.0205; ~10/9 = 182.354; ~6/5 = 315.687; ~49/40 = 350.980
- Diamond monotone range: [26.667, 66.667] (1\45 to 1\18)
- Diamond tradeoff range: [48.920, 49.179]
- Diamond monotone and tradeoff: [48.920, 49.179]
Badness: 0.003610
11-limit
The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75], ⟨0 2 3 2 16]]
POTE generator: ~36/35 = 48.8654
Vals: Template:Val list
Badness: 0.027332
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93], ⟨0 2 3 2 16 -9]]
POTE generator: ~36/35 = 48.9030
Vals: Template:Val list
Badness: 0.029404
Ennealimmia
Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ennealimmia temperament (171&270, named by Xenllium).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 131072/130977
Mapping: [⟨9 1 1 12 124], ⟨0 2 3 2 -14]]
POTE generator: ~36/35 = 48.9244
Vals: Template:Val list
Badness: 0.026463
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93], ⟨0 2 3 2 -14 -9]]
POTE generator: ~36/35 = 48.9336
Vals: Template:Val list
Badness: 0.016607
Ennealimnic
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 4375/4356
Mapping: [⟨9 1 1 12 -2], ⟨0 2 3 2 5]]
POTE generator: ~36/35 = 49.395
Tuning ranges:
- Diamond monotone range: [44.444, 53.333] (1\27 to 2\45)
- Diamond tradeoff range: [48.920, 52.592]
- Diamond monotone and tradeoff: [48.920, 52.592]
Vals: Template:Val list
Badness: 0.020347
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 625/624
Mapping: [⟨9 1 1 12 -2 -33], ⟨0 2 3 2 5 10]]
POTE generator: ~36/35 = 49.341
Tuning ranges:
- Diamond monotone range: [48.485, 50.000] (4\99 to 3\72)
- Diamond tradeoff range: [48.825, 52.592]
- Diamond monotone and tradeoff: [48.825, 50.000]
Vals: Template:Val list
Badness: 0.023250
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3], ⟨0 2 3 2 5 10 6]]
POTE generator: ~36/35 = 49.335
Tuning ranges:
- Diamond monotone range: [48.485, 50.000] (4\99 to 3\72)
- Diamond tradeoff range: [46.363, 52.592]
- Diamond monotone and tradeoff: [48.485, 50.000]
Vals: Template:Val list
Badness: 0.014602
Ennealim
Subgroup: 2.3.5.7.13
Comma list: 169/168, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20], ⟨0 2 3 2 5 2]]
POTE generator: ~36/35 = 49.708
Vals: Template:Val list
Badness: 0.020697
Ennealiminal
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 4375/4374
Mapping: [⟨9 1 1 12 51], ⟨0 2 3 2 -3]]
POTE generator: ~36/35 = 49.504
Vals: Template:Val list
Badness: 0.031123
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20], ⟨0 2 3 2 -3 2]]
POTE generator: ~36/35 = 49.486
Vals: Template:Val list
Badness: 0.030325
Hemiennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 4375/4374
Mapping: [⟨18 0 -1 22 48], ⟨0 2 3 2 1]]
POTE generator: ~99/98 = 17.6219
Tuning ranges:
- Diamond monotone range: [13.333, 22.222] (1\90 to 1\54)
- Diamond tradeoff range: [17.304, 17.985]
- Diamond monotone and tradeoff: [17.304, 17.985]
Vals: Template:Val list
Badness: 0.006283
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19], ⟨0 2 3 2 1 6]]
POTE generator ~99/98 = 17.7504
Tuning ranges:
- Diamond monotone range: [16.667, 22.222] (1\72 to 1\54)
- Diamond tradeoff range: [17.304, 18.309]
- Diamond monotone and tradeoff: [17.304, 18.309]
Vals: Template:Val list
Badness: 0.012505
Semihemiennealimmal
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88], ⟨0 4 6 4 2 -3]]
POTE generator: ~39/32 = 342.139
Vals: Template:Val list
Badness: 0.013104
Semiennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4000/3993, 4375/4374
Mapping: [⟨9 3 4 14 18], ⟨0 6 9 6 7]]
POTE generator: ~140/121 = 250.3367
Vals: Template:Val list
Badness: 0.034196
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Mapping: [⟨9 3 4 14 18 -8], ⟨0 6 9 6 7 22]]
POTE generator: ~140/121 = 250.3375
Vals: Template:Val list
Badness: 0.026122
Quadraennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 234375/234256
Mapping: [⟨9 1 1 12 -7], ⟨0 8 12 8 23]]
POTE generator: ~77/75 = 45.595
Vals: Template:Val list
Badness: 0.021320
Trinealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 2097152/2096325
Mapping: [⟨27 1 0 34 177], ⟨0 2 3 2 -4]]
POTE generator: ~6/5 = 315.644
Vals: Template:Val list
Badness: 0.029812
Gamera
Subgroup: 2.3.5.7
Comma list: 4375/4374, 589824/588245
Mapping: [⟨1 6 10 3], ⟨0 -23 -40 -1]]
Wedgie: ⟨⟨ 23 40 1 10 -63 -110 ]]
POTE generator ~8/7 = 230.336
Badness: 0.037648
Hemigamera
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 589824/588245
Mapping: [⟨2 12 20 6 5], ⟨0 -23 -40 -1 5]]
POTE generator: ~8/7 = 230.3370
Vals: Template:Val list
Badness: 0.040955
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
Mapping: [⟨2 12 20 6 5 17], ⟨0 -23 -40 -1 5 -25]]
POTE generator: ~8/7 = 230.3373
Vals: Template:Val list
Badness: 0.020416
Supermajor
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of ⟨⟨ 37 46 75 -13 15 45 ]]. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 52734375/52706752
Mapping: [⟨1 15 19 30], ⟨0 -37 -46 -75]]
Wedgie: ⟨⟨ 37 46 75 -13 15 45 ]]
POTE generator: ~9/7 = 435.082
Badness: 0.010836
Semisupermajor
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 35156250/35153041
Mapping: [⟨2 30 38 60 41], ⟨0 -37 -46 -75 -47]]
POTE generator: ~9/7 = 435.082
EDOs: Template:Val list
Badness: 0.012773
Enneadecal
Enneadecal temperament tempers out the enneadeca, [-14 -19 19⟩, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19EDO up to just ones. 171EDO is a good tuning for either the 5 or 7 limits, and 494EDO shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665EDO for a tuning.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 703125/702464
Mapping: [⟨19 0 14 -37], ⟨0 1 1 3]]
Wedgie: ⟨⟨ 19 19 57 -14 37 79 ]]
Mapping generators: ~28/27, ~3
POTE generator: ~3/2 = 701.880
Badness: 0.010954
Hemienneadecal
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 234375/234256
Mapping: [⟨38 0 28 -74 11], ⟨0 1 1 3 2]]
POTE generator: ~3/2 = 701.881
Vals: Template:Val list
Badness: 0.009985
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
Mapping: [⟨38 0 28 -74 11 502], ⟨0 1 1 3 2 -6]]
POTE generator: ~3/2 = 701.986
Vals: Template:Val list
Badness: 0.030391
Deca
Deca temperament has a period of 1/10 octave and tempers out the linus comma, [11 -10 -10 10⟩ and [12 -3 -14 9⟩ = 165288374272/164794921875 (satritrizo-asepbigu).
Subgroup: 2.3.5.7
Comma list: 4375/4374, 165288374272/164794921875
Mapping: [⟨10 4 9 2], ⟨0 5 6 11]]
Wedgie: ⟨⟨ 50 60 110 -21 34 87 ]]
POTE generator: ~6/5 = 315.577
Badness: 0.080637
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 422576/421875
Mapping: [⟨10 4 9 2 18], ⟨0 5 6 11 7]]
POTE generator: ~6/5 = 315.582
Vals: Template:Val list
Badness: 0.024329
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨10 4 9 2 18 37], ⟨0 5 6 11 7 0]]
POTE generator: ~6/5 = 315.602
Vals: Template:Val list
Badness: 0.016810
Mitonic
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2100875/2097152
Mapping: [⟨1 -1 -3 6], ⟨0 17 35 -21]]
Wedgie: ⟨⟨ 17 35 -21 16 -81 -147 ]]
POTE generator: ~10/9 = 182.458
Badness: 0.025184
Sfourth
Subgroup: 2.3.5.7
Comma list: 4375/4374, 64827/64000
Mapping: [⟨1 2 3 3], ⟨0 -19 -31 -9]]
Wedgie: ⟨⟨ 19 31 9 5 -39 -66 ]]
POTE generator: ~49/48 = 26.287
Badness: 0.123291
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 441/440, 4375/4374
Mapping: [⟨1 2 3 3 4], ⟨0 -19 -31 -9 -25]]
POTE generator: ~49/48 = 26.286
Vals: Template:Val list
Badness: 0.054098
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 325/324, 441/440
Mapping: [⟨1 2 3 3 4 4], ⟨0 -19 -31 -9 -25 -14]]
POTE generator: ~49/48 = 26.310
Vals: Template:Val list
Badness: 0.033067
Sfour
Subgroup: 2.3.5.7.11
Comma list: 385/384, 2401/2376, 4375/4374
Mapping: [⟨1 2 3 3 3], ⟨0 -19 -31 -9 21]]
POTE generator: ~49/48 = 26.246
Vals: Template:Val list
Badness: 0.076567
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 364/363, 385/384, 4375/4374
Mapping: [⟨1 2 3 3 3 3], ⟨0 -19 -31 -9 21 32]]
POTE generator: ~49/48 = 26.239
Vals: Template:Val list
Badness: 0.051893
Abigail
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2147483648/2144153025
Mapping: [⟨2 7 13 -1], ⟨0 -11 -24 19]]
Wedgie: ⟨⟨ 22 48 -38 25 -122 -223 ]]
POTE generator: ~6912/6125 = 208.899
Badness: 0.037000
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 20614528/20588575
Mapping: [⟨2 7 13 -1 1], ⟨0 -11 -24 19 17]]
POTE generator: ~1155/1024 = 208.901
Vals: Template:Val list
Badness: 0.012860
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
Mapping: [⟨2 7 13 -1 1 -2], ⟨0 -11 -24 19 17 27]]
POTE generator: ~44/39 = 208.903
Vals: Template:Val list
Badness: 0.008856
Semidimi
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit [-12 -73 55⟩ and 7-limit 3955078125/3954653486, as well as 4375/4374.
Subgroup: 2.3.5
Comma: [-12 -73 55⟩
Mapping: [⟨1 36 48], ⟨0 -55 -73]]
POTE generator: ~162/125 = 449.1269
Badness: 0.754866
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 3955078125/3954653486
Mapping: [⟨1 36 48 61], ⟨0 -55 -73 -93]]
Wedgie: ⟨⟨ 55 73 93 -12 -7 11 ]]
POTE generator: ~35/27 = 449.1270
Badness: 0.015075
Brahmagupta
The brahmagupta temperament has a period of 1/7 octave, tempering out the akjaysma, [47 -7 -7 -7⟩ = 140737488355328 / 140710042265625.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 70368744177664/70338939985125
Mapping: [⟨7 2 -8 53], ⟨0 3 8 -11]]
Wedgie: ⟨⟨ 21 56 -77 40 -181 -336 ]]
POTE generator: ~27/20 = 519.716
Badness: 0.029122
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4000/3993, 4375/4374, 131072/130977
Mapping: [⟨7 2 -8 53 3], ⟨0 3 8 -11 7]]
POTE generator: ~27/20 = 519.704
Vals: Template:Val list
Badness: 0.052190
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
Mapping: [⟨7 2 -8 53 3 35], ⟨0 3 8 -11 7 -3]]
POTE generator: ~27/20 = 519.706
Vals: Template:Val list
Badness: 0.023132
Quasithird
The quasithird temperament is featured by a major third interval which is 1600000/1594323 (amity comma) or 5120/5103 (hemifamity comma) below the just major third 5/4 as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the ragisma and [-60 29 0 5⟩.
Subgroup: 2.3.5
Comma: [55 -64 20⟩
Mapping: [⟨4 0 -11], ⟨0 5 16]]
POTE generator: ~1594323/1280000 = 380.395
Badness: 0.099519
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 1153470752371588581/1152921504606846976
Mapping: [⟨4 0 -11 48], ⟨0 5 16 -29]]
Wedgie: ⟨⟨ 20 64 -116 55 -240 -449 ]]
POTE generator: ~5103/4096 = 380.388
Badness: 0.061813
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296
Mapping: [⟨4 0 -11 48 43], ⟨0 5 16 -29 -23]]
POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)
Vals: Template:Val list
Badness: 0.021125
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195
Mapping: [⟨4 0 -11 48 43 11], ⟨0 5 16 -29 -23 3]]
POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)
Vals: Template:Val list
Badness: 0.029501
Semidimfourth
The semidimifourth temperament is featured by a semi-diminished fourth inverval which is 128/125 above the pythagorean major third 81/64. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.
Subgroup: 2.3.5
Comma: [7 41 -31⟩
Mapping: [⟨1 21 28], ⟨0 -31 -41]]
POTE generator: ~162/125 = 448.449
Badness: 0.233376
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 235298/234375
Mapping: [⟨1 21 28 36], ⟨0 -31 -41 -53]]
Wedgie: ⟨⟨ 31 41 53 -7 -3 8 ]]
POTE generator: ~35/27 = 448.456
Badness: 0.055249
Neusec
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 235298/234375
Mapping: [⟨2 11 15 19 15], ⟨0 -31 -41 -53 -32]]
POTE generator: ~12/11 = 151.547
Vals: Template:Val list
Badness: 0.059127
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374
Mapping: [⟨2 11 15 19 15 17], ⟨0 -31 -41 -53 -32 -38]]
POTE generator: ~12/11 = 151.545
Vals: Template:Val list
Badness: 0.030941
Acrokleismic
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2202927104/2197265625
Mapping: [⟨1 10 11 27], ⟨0 -32 -33 -92]]
Wedgie: ⟨⟨ 32 33 92 -22 56 121 ]]
POTE generator: ~6/5 = 315.557
Badness: 0.056184
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 172032/171875
Mapping: [⟨1 10 11 27 -16], ⟨0 -32 -33 -92 74]]
POTE generator: ~6/5 = 315.558
Vals: Template:Val list
Badness: 0.036878
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976
Mapping: [⟨1 10 11 27 -16 25], ⟨0 -32 -33 -92 74 -81]]
POTE generator: ~6/5 = 315.557
Vals: Template:Val list
Badness: 0.026818
Counteracro
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 117649/117612
Mapping: [⟨1 10 11 27 55], ⟨0 -32 -33 -92 -196]]
POTE generator: ~6/5 = 315.553
Vals: Template:Val list
Badness: 0.042572
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374
Mapping: [⟨1 10 11 27 55 25], ⟨0 -32 -33 -92 -196 -81]]
POTE generator: ~6/5 = 315.554
Vals: Template:Val list
Badness: 0.026028
Seniority
Subgroup: 2.3.5.7
Comma list: 4375/4374, 201768035/201326592
Mapping: [⟨1 11 19 2], ⟨0 -35 -62 3]]
Wedgie: ⟨⟨ 35 62 -3 17 -103 -181 ]]
POTE generator: ~3087/2560 = 322.804
Badness: 0.044877
Orga
Subgroup: 2.3.5.7
Comma list: 4375/4374, 54975581388800/54936068900769
Mapping: [⟨2 21 36 5], ⟨0 -29 -51 1]]
Wedgie: ⟨⟨ 58 102 -2 27 -166 -291 ]]
POTE generator: ~8/7 = 231.104
Badness: 0.040236
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5767168/5764801
Mapping: [⟨2 21 36 5 2], ⟨0 -29 -51 1 8]]
POTE generator: ~8/7 = 231.103
Vals: Template:Val list
Badness: 0.016188
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
Mapping: [⟨2 21 36 5 2 24], ⟨0 -29 -51 1 8 -27]]
POTE generator: ~8/7 = 231.103
Vals: Template:Val list
Badness: 0.021762
Quatracot
Subgroup: 2.3.5.7
Comma list: 4375/4374, 1483154296875/1473173782528
Mapping: [⟨2 7 7 23], ⟨0 -13 -8 -59]]
Wedgie: ⟨⟨ 26 16 118 -35 114 229 ]]
POTE generator: ~448/405 = 176.805
Badness: 0.175982
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 1265625/1261568
Mapping: [⟨2 7 7 23 19], ⟨0 -13 -8 -59 -41]]
POTE generator: ~448/405 = 176.806
Vals: Template:Val list
Badness: 0.041043
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 1575/1573, 2200/2197
Mapping: [⟨2 7 7 23 19 13], ⟨0 -13 -8 -59 -41 -19]]
POTE generator: ~195/176 = 176.804
Vals: Template:Val list
Badness: 0.022643
Octoid
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 (ragisma) and 16875/16807 (mirkwai). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 16875/16807
Mapping: [⟨8 1 3 3], ⟨0 3 4 5]]
Wedgie: ⟨⟨ 24 32 40 -5 -4 3 ]]
Mapping generators: ~49/45, ~7/5
POTE generator: ~7/5 = 583.940
- Diamond monotone range: [578.571, 600.000] (27\56 to 4\8)
- Diamond tradeoff range: [582.512, 584.359]
- Diamond monotone and tradeoff: [582.512, 584.359]
Badness: 0.042670
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 4000/3993
Mapping: [⟨8 1 3 3 16], ⟨0 3 4 5 3]]
POTE generator: ~7/5 = 583.962
Tuning ranges:
- Diamond monotone range: [581.250, 586.364] (31\64, 43\88)
- Diamond tradeoff range: [582.512, 585.084]
- diamond monotone and tradeoff: [582.512, 585.084]
Vals: Template:Val list
Badness: 0.014097
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 1375/1372, 4000/3993, 625/624
Mapping: [⟨8 1 3 3 16 -21], ⟨0 3 4 5 3 13]]
POTE generator: ~7/5 = 583.905
Vals: Template:Val list
Badness: 0.015274
Music
Octopus
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 540/539
Mapping: [⟨8 1 3 3 16 14], ⟨0 3 4 5 3 4]]
POTE generator: ~7/5 = 583.892
Vals: Template:Val list
Badness: 0.021679
Amity
The generator for amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament. 99EDO is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives pure major thirds.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2], ⟨0 -5 -13 17]]
Wedgie: ⟨⟨ 5 13 -17 9 -41 -76 ]]
POTE generator: ~128/105 = 339.432
Badness: 0.023649
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2 21], ⟨0 -5 -13 17 -62]]
POTE generator: ~128/105 = 339.464
Vals: Template:Val list
Badness: 0.031506
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 847/845
Mapping: [⟨1 3 6 -2 21 17], ⟨0 -5 -13 17 -62 -47]]
POTE generator: ~128/105 = 339.481
Vals: Template:Val list
Badness: 0.028008
Hitchcock
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [⟨1 3 6 -2 6], ⟨0 -5 -13 17 -9]]
POTE generator: ~11/9 = 339.390
Vals: Template:Val list
Badness: 0.035187
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [⟨1 3 6 -2 6 2], ⟨0 -5 -13 17 -9 6]]
POTE generator: ~11/9 = 339.419
Vals: Template:Val list
Badness: 0.022448
Hemiamity
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]]
POTE generator: ~64/55 = 339.439
Vals: Template:Val list
Badness: 0.031307
Parakleismic
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, [8 14 -13⟩, with the 118EDO tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being ⟨⟨ 13 14 35 -8 19 42 ]] and adding 3136/3125 and 4375/4374, and the 11-limit wedgie ⟨⟨ 13 14 35 -36 -8 19 -102 42 -132 -222 ]] adding 385/384. For the 7-limit 99EDO may be preferred, but in the 11-limit it is best to stick with 118.
Subgroup: 2.3.5
Comma list: 1224440064/1220703125
Mapping: [⟨1 5 6], ⟨0 -13 -14]]
POTE generator: ~6/5 = 315.240
Badness: 0.043279
7-limit
Subgroup: 2.3.5.7
Comma list: 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12], ⟨0 -13 -14 -35]]
Wedgie: ⟨⟨ 13 14 35 -8 19 42 ]]
POTE generator: ~6/5 = 315.181
Badness: 0.027431
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 -6], ⟨0 -13 -14 -35 36]]
POTE generator: ~6/5 = 315.251
Vals: Template:Val list
Badness: 0.049711
Paralytic
The paralytic temperament (118&217, named by Flora Canou) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575.
Subgroup: 2.3.5.7.11
Comma list: 441/440, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 25], ⟨0 -13 -14 -35 -82]]
POTE generator: ~6/5 = 315.220
Vals: Template:Val list
Badness: 0.036027
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 25 -16], ⟨0 -13 -14 -35 -82 75]]
POTE generator: ~6/5 = 315.214
Vals: Template:Val list
Badness: 0.044710
Paraklein
The paraklein temperament (19e&118, named by Xenllium) is another 13-limit extension of paralytic, which equates 13/11 with 32/27, 14/13 with 15/14, 25/24 with 26/25, and 27/26 with 28/27.
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 625/624, 729/728
Mapping: [⟨1 5 6 12 25 15], ⟨0 -13 -14 -35 -82 -43]]
POTE generator: ~6/5 = 315.225
Vals: Template:Val list
Badness: 0.037618
Parkleismic
Subgroup: 2.3.5.7.11
Comma list: 176/175, 1375/1372, 2200/2187
Mapping: [⟨1 5 6 12 20], ⟨0 -13 -14 -35 -63]]
POTE generator: ~6/5 = 315.060
Vals: Template:Val list
Badness: 0.055884
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 176/175, 325/324, 1375/1372
Mapping: [⟨1 5 6 12 20 10], ⟨0 -13 -14 -35 -63 -24]]
POTE generator: ~6/5 = 315.075
Vals: Template:Val list
Badness: 0.036559
Paradigmic
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 3136/3125
Mapping: [⟨1 5 6 12 -1], ⟨0 -13 -14 -35 17]]
POTE generator: ~6/5 = 315.096
Vals: Template:Val list
Badness: 0.041720
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 540/539, 832/825
Mapping: [⟨1 5 6 12 -1 10], ⟨0 -13 -14 -35 17 -24]]
POTE generator: ~6/5 = 315.080
Vals: Template:Val list
Badness: 0.035781
Semiparakleismic
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 3136/3125, 4375/4374
Mapping: [⟨2 10 12 24 19], ⟨0 -13 -14 -35 -23]]
POTE generator: ~6/5 = 315.181
Vals: Template:Val list
Badness: 0.034208
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374
Mapping: [⟨2 10 12 24 19 -1], ⟨0 -13 -14 -35 -23 16]]
POTE generator: ~6/5 = 315.156
Vals: Template:Val list
Badness: 0.033775
Gentsemiparakleismic
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 3136/3125
Mapping: [⟨2 10 12 24 19 20], ⟨0 -13 -14 -35 -23 -24]]
POTE generator: ~6/5 = 315.184
Vals: Template:Val list
Badness: 0.040467
Counterkleismic
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, [-20 -24 25⟩, the amount by which six major dieses (648/625) fall short of the classic major third (5/4). It can be described as 19&224 temperament (counterkleismic, named by Xenllium), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).
Subgroup: 2.3.5.7
Comma list: 4375/4374, 158203125/157351936
Mapping: [⟨1 -5 -4 -18], ⟨0 25 24 79]]
Wedgie: ⟨⟨ 25 24 79 -20 55 116 ]]
POTE generator: ~6/5 = 316.060
Badness: 0.090553
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 2097152/2096325
Mapping: [⟨1 -5 -4 -18 19], ⟨0 25 24 79 -59]]
POTE generator: ~6/5 = 316.071
Vals: Template:Val list
Badness: 0.070952
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 729/728, 10985/10976
Mapping: [⟨1 -5 -4 -18 19 -15], ⟨0 25 24 79 -59 71]]
POTE generator: ~6/5 = 316.070
Vals: Template:Val list
Badness: 0.033874
Counterlytic
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4375/4374, 496125/495616
Mapping: [⟨1 -5 -4 -18 -40], ⟨0 25 24 79 165]]
POTE generator: ~6/5 = 316.065
Vals: Template:Val list
Badness: 0.065400
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 1375/1372, 10985/10976
Mapping: [⟨1 -5 -4 -18 -40 -15], ⟨0 25 24 79 165 71]]
POTE generator: ~6/5 = 316.065
Vals: Template:Val list
Badness: 0.029782
Quincy
Subgroup: 2.3.5.7
Comma list: 4375/4374, 823543/819200
Mapping: [⟨1 2 3 3], ⟨0 -30 -49 -14]]
Wedgie: ⟨⟨ 30 49 14 8 -62 -105 ]]
POTE generator: ~1728/1715 = 16.613
Badness: 0.079657
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4000/3993, 4375/4374
Mapping: [⟨1 2 3 3 4], ⟨0 -30 -49 -14 -39]]
POTE generator: ~100/99 = 16.613
Vals: Template:Val list
Badness: 0.030875
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 676/675, 4375/4374
Mapping: [⟨1 2 3 3 4 5], ⟨0 -30 -49 -14 -39 -94]]
POTE generator: ~100/99 = 16.602
Vals: Template:Val list
Badness: 0.023862
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155
Mapping: [⟨1 2 3 3 4 5 5], ⟨0 -30 -49 -14 -39 -94 -66]]
POTE generator: ~100/99 = 16.602
Vals: Template:Val list
Badness: 0.014741
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675
Mapping: [⟨1 2 3 3 4 5 5 4], ⟨0 -30 -49 -14 -39 -94 -66 18]]
POTE generator: ~100/99 = 16.594
Vals: Template:Val list
Badness: 0.015197
Chlorine
The name of chlorine temperament comes from Chlorine, the 17th element.
Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, [-52 -17 34⟩, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out [-49 4 22 -3⟩ as well as the ragisma.
Subgroup: 2.3.5
Comma: [-52 -17 34⟩
Mapping: [⟨17 26 39], ⟨0 2 1]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2687
Badness: 0.077072
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 193119049072265625/193091834023510016
Mapping: [⟨17 26 39 43], ⟨0 2 1 10]]
Wedgie: ⟨⟨ 34 17 170 -52 174 347 ]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2936
Badness: 0.041658
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 1879453125/1879048192
Mapping: [⟨17 26 39 43 64], ⟨0 2 1 10 -11]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2690
Vals: Template:Val list
Badness: 0.063706
Palladium
The name of palladium temperament (named by Xenllium) comes from Palladium, the 46th element.
Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, [-39 92 -46⟩, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out [-51 8 2 12⟩ as well as the ragisma.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2270317133144025/2251799813685248
Mapping: [⟨46 73 107 129], ⟨0 -1 -2 1]]
Wedgie: ⟨⟨ 46 92 -46 39 -202 -365 ]]
POTE generator: ~3/2 = 701.6074
Badness: 0.308505
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 9801/9800, 134775333/134217728
Mapping: [⟨46 73 107 129 159], ⟨0 -1 -2 1 1]]
POTE generator: ~3/2 = 701.5951
Vals: Template:Val list
Badness: 0.073783
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364
Mapping: [⟨46 73 107 129 159 170], ⟨0 -1 -2 1 1 2]]
POTE generator: ~3/2 = 701.6419
Vals: Template:Val list
Badness: 0.040751
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224
Mapping: [⟨46 73 107 129 159 170 188], ⟨0 -1 -2 1 1 2 0]]
POTE generator: ~3/2 = 701.6425
Vals: Template:Val list
Badness: 0.022441
Monzism
The monzism temperament (53&612, named by Xenllium) is a rank-two temperament which tempers out the monzisma, [54 -37 2⟩ and the nanisma, [109 -67 0 -1⟩, as well as the ragisma, 4375/4374.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 36030948116563575/36028797018963968
Mapping: [⟨1 2 10 -25], ⟨0 -2 -37 134]]
Wedgie: ⟨⟨ 2 37 -134 54 -218 -415 ]]
POTE generator: ~310078125/268435456 = 249.0207
Badness: 0.046569
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 184549376/184528125
Mapping: [⟨1 2 10 -25 46], ⟨0 -2 -37 134 -205]]
POTE generator: ~231/200 = 249.0193
Vals: Template:Val list
Badness: 0.057083
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625
Mapping: [⟨1 2 10 -25 46 23], ⟨0 -2 -37 134 -205 -93]]
POTE generator: ~231/200 = 249.0199
Vals: Template:Val list
Badness: 0.053780