Ragismic microtemperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Xenllium (talk | contribs)
Line 847: Line 847:


= Parakleismic =
= Parakleismic =
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13>, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being <<13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie <<13 14 35 -36 ...|| adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13>, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being <<13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie <<13 14 35 -36 -8 19 -102 42 -132 -222|| adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118.


Comma: 124440064/1220703125
[[Comma]]: 124440064/1220703125


POTE generator: ~6/5 = 315.240
[[Mapping]]: [<1 5 6|, <0 -13 -14|]


Map: [<1 5 6|, <0 -13 -14|]
[[POTE tuning|POTE generator]]: ~6/5 = 315.240


EDOs: 19, 61, 80, 99, 118, 453, 571, 689, 1496
[[EDO|Vals]]: {{Val list| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}


Badness: 0.0433
[[Badness]]: 0.043279


==7-limit==
== 7-limit ==
Commas: 3136/3125, 4375/4374
[[Comma list]]: 3136/3125, 4375/4374


POTE generator: ~6/5 = 315.181
[[Mapping]]: [<1 5 6 12|, <0 -13 -14 -35|]
 
[[Wedgie]]: <<13 14 35 -8 19 42||
 
[[POTE tuning|POTE generator]]: ~6/5 = 315.181


Map: [<1 5 6 12|, <0 -13 -14 -35|]
[[EDO|Vals]]: {{Val list| 19, 80, 99, 217, 316, 415 }}


EDOs: 19, 80, 99, 217, 316, 415
[[Badness]]: 0.027431


Badness: 0.0274
== 11-limit ==
Comma list: 385/384, 3136/3125, 4375/4374


==11-limit==
Mapping: [<1 5 6 12 -6|, <0 -13 -14 -35 36|]
Commas: 385/384, 3136/3125, 4375/4374


POTE generator: ~6/5 = 315.251
POTE generator: ~6/5 = 315.251


Map: [<1 5 6 12 -6|, <0 -13 -14 -35 36|]
Vals: {{Val list| 19, 99, 118 }}


EDOs: 19, 99, 118
Badness: 0.049711


Badness: 0.0497
== Parkleismic ==
Comma list: 176/175, 1375/1372, 2200/2187


==Parkleismic==
Mapping: [<1 5 6 12 20|, <0 -13 -14 -35 -63|]
Commas: 176/175, 1375/1372, 2200/2187


POTE generator: ~6/5 = 315.060
POTE generator: ~6/5 = 315.060


Map: [<1 5 6 12 20|, <0 -13 -14 -35 -63|]
Vals: {{Val list| 19e, 80, 179, 259cd }}


EDOs: 80, 179, 259cd
Badness: 0.055884


Badness: 0.0559
=== 13-limit ===
Comma list: 169/168, 176/175, 325/324, 1375/1372


===13-limit===
Mapping: [<1 5 6 12 20 10|, <0 -13 -14 -35 -63 -24|]
Commas: 169/168, 176/175, 325/324, 1375/1372


POTE generator: ~6/5 = 315.075
POTE generator: ~6/5 = 315.075


Map: [<1 5 6 12 20 10|, <0 -13 -14 -35 -63 -24|]
Vals: {{Val list| 19e, 80, 179 }}


EDOs: 15, 19, 80, 179
Badness: 0.036559


Badness: 0.0366
== Paradigmic ==
Comma list: 540/539, 896/891, 3136/3125


==Paradigmic==
Mapping: [<1 5 6 12 -1|, <0 -13 -14 -35 17|]
Commas: 540/539, 896/891, 3136/3125


POTE generator: ~6/5 = 315.096
POTE generator: ~6/5 = 315.096


Map: [<1 5 6 12 -1|, <0 -13 -14 -35 17|]
Vals: {{Val list| 19, 61d, 80, 99e, 179e }}


EDOs: 19, 80, 99e, 179e
Badness: 0.041720


Badness: 0.0417
=== 13-limit ===
Comma list: 169/168, 325/324, 540/539, 832/825


===13-limit===
Mapping: [<1 5 6 12 -1 10|, <0 -13 -14 -35 17 -24|]
Commas: 169/168, 325/324, 540/539, 832/825


POTE generator: ~6/5 = 315.080
POTE generator: ~6/5 = 315.080


Map: [<1 5 6 12 -1 10|, <0 -13 -14 -35 17 -24|]
Vals: {{Val list| 19, 61d, 80, 99e, 179e }}


EDOs: 19, 80, 99e, 179e
Badness: 0.035781


Badness: 0.0358
== Semiparakleismic ==
Comma list: 3025/3024, 3136/3125, 4375/4374


== Semiparakleismic ==
Mapping: [<2 10 12 24 19|, <0 -13 -14 -35 -23|]
Commas: 3025/3024, 3136/3125, 4375/4374


POTE generator: ~6/5 = 315.181
POTE generator: ~6/5 = 315.181


Map: [<2 10 12 24 19|, <0 -13 -14 -35 -23|]
Vals: {{Val list| 80, 118, 198, 316, 514c, 830c }}
 
EDOs: 80, 118, 198, 316, 514c, 830c


Badness: 0.0342
Badness: 0.034208


=== 13-limit ===
=== 13-limit ===
Commas: 352/351, 1001/1000, 3025/3024, 4375/4374
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374


POTE generator: ~6/5 = 315.1563
Mapping: [<2 10 12 24 19 -1|, <0 -13 -14 -35 -23 16|]


Map: [<2 10 12 24 19 -1|, <0 -13 -14 -35 -23 16|]
POTE generator: ~6/5 = 315.156


EDOs: {{EDOs|80, 118, 198}}
Vals: {{Val list| 80, 118, 198 }}


Badness: 0.0338
Badness: 0.033775


=== Gentsemiparakleismic ===
=== Gentsemiparakleismic ===
Commas: 169/168, 325/324, 364/363, 3136/3125
Comma list: 169/168, 325/324, 364/363, 3136/3125


POTE generator: ~6/5 = 315.1839
Mapping: [&lt;2 10 12 24 19 20|, &lt;0 -13 -14 -35 -23 -24|]


Map: [<2 10 12 24 19 20|, <0 -13 -14 -35 -23 -24|]
POTE generator: ~6/5 = 315.184


EDOs: {{EDOs|80, 118f, 198f}}
Vals: {{Val list| 80, 118f, 198f }}


Badness: 0.0405
Badness: 0.040467


=Quincy=
=Quincy=

Revision as of 13:46, 23 April 2021

The ragisma is 4375/4374 with a monzo of |-1 -7 4 1>, the smallest 7-limit superparticular ratio. Since (10/9)^4 = 4375/4374 * 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 * (27/25)^2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.

Temperaments not discussed here include crepuscular, flattone, hystrix, sensi, unidec, quartonic, catakleismic, modus, pontiac, whirrschmidt, zarvo, vishnu, and vulture.

Ennealimmal

Ennealimmal temperament tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimmal comma, |1 -27 18>, which leads to the identification of (27/25)^9 with the octave, and gives ennealimmal a period of 1/9 octave. While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. Its wedgie is <<18 27 18 1 -22 -34||.

Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 and 60/49, all of which have their own interesting advantages. Possible tunings are 441, 612, or 3600 EDOs, though its hardly likely anyone could tell the difference.

If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example.) In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.

Comma list: 2401/2400, 4375/4374

Tuning ranges:

  • valid range: [26.667, 66.667] (1\45 to 1\18)
  • nice range: [48.920, 49.179]
  • strict range: [48.920, 49.179]

Mapping: [<9 1 1 12|, <0 2 3 2|]

Wedgie: <<18 27 18 1 -22 -34||

Mapping generators: ~27/25, ~5/3

POTE generators: ~36/35 = 49.0205; ~10/9 = 182.354; ~6/5 = 315.687; ~49/40 = 350.980

Vals: Template:Val list

Badness: 0.003610

11-limit

Comma list: 2401/2400, 4375/4374, 5632/5625

Mapping: [<9 1 1 12 -75|, <0 2 3 2 16|]

POTE generator: ~36/35 = 48.8654

Vals: Template:Val list

Badness: 0.027332

Hemiennealimmal

Comma list: 2401/2400, 3025/3024, 4375/4374

Tuning ranges:

  • valid range: [13.333, 22.222] (1\90 to 1\54)
  • nice range: [17.304, 17.985]
  • strict range: [17.304, 17.985]

Mapping: [<18 0 -1 22 48|, <0 2 3 2 1|]

POTE generator: ~99/98 = 17.6219

Vals: Template:Val list

Badness: 0.006283

13-limit

Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024

Tuning ranges:

  • valid range: [16.667, 22.222] (1\72 to 1\54)
  • nice range: [17.304, 18.309]
  • strict range: [17.304, 18.309]

Mapping: [<18 0 -1 22 48 -19|, <0 2 3 2 1 6|]

POTE generator ~99/98 = 17.7504

Vals: Template:Val list

Badness: 0.012505

Semihemiennealimmal

Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374

Mapping: [<18 0 -1 22 48 88|, <0 4 6 4 2 -3|]

POTE generator: ~39/32 = 342.139

Vals: Template:Val list

Badness: 0.013104

Semiennealimmal

Comma list: 2401/2400, 4000/3993, 4375/4374

Mapping: [<9 3 4 14 18|, <0 6 9 6 7|]

POTE generator: ~140/121 = 250.3367

Vals: Template:Val list

Badness: 0.034196

13-limit

Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374

Mapping: [<9 3 4 14 18 -8|, <0 6 9 6 7 22|]

POTE generator: ~140/121 = 250.3375

Vals: Template:Val list

Badness: 0.026122

Quadraennealimmal

Comma list: 2401/2400, 4375/4374, 234375/234256

Mapping: [<9 1 1 12 -7|, <0 8 12 8 23|]

POTE generator: ~77/75 = 45.595

Vals: Template:Val list

Badness: 0.021320

Ennealimnic

Comma list: 243/242, 441/440, 4375/4356

Tuning ranges:

  • valid range: [44.444, 53.333] (1\27 to 2\45)
  • nice range: [48.920, 52.592]
  • strict range: [48.920, 52.592]

Mapping: [<9 1 1 12 -2|, <0 2 3 2 5|]

POTE generator: ~36/35 = 49.395

Vals: Template:Val list

Badness: 0.020347

13-limit

Comma list: 243/242, 364/363, 441/440, 625/624

Tuning ranges:

  • valid range: [48.485, 50.000] (4\99 to 3\72)
  • nice range: [48.825, 52.592]
  • strict range: [48.825, 50.000]

Mapping: [<9 1 1 12 -2 -33|, <0 2 3 2 5 10|]

POTE generator: ~36/35 = 49.341

Vals: Template:Val list

Badness: 0.023250

17-limit

Comma list: 243/242, 364/363, 375/374, 441/440, 595/594

Tuning ranges:

  • valid range: [48.485, 50.000] (4\99 to 3\72)
  • nice range: [46.363, 52.592]
  • strict range: [48.485, 50.000]

Mapping: [<9 1 1 12 -2 -33 -3|, <0 2 3 2 5 10 6|]

POTE generator: ~36/35 = 49.335

Vals: Template:Val list

Badness: 0.014602

Ennealim

Comma list: 169/168, 243/242, 325/324, 441/440

Mapping: [<9 1 1 12 -2 20|, <0 2 3 2 5 2|]

POTE generator: ~36/35 = 49.708

Vals: Template:Val list

Badness: 0.020697

Ennealiminal

Comma list: 385/384, 1375/1372, 4375/4374

Mapping: [<9 1 1 12 51|, <0 2 3 2 -3|]

POTE generator: ~36/35 = 49.504

Vals: Template:Val list

Badness: 0.031123

13-limit

Comma list: 169/168, 325/324, 385/384, 1375/1372

Mapping: [<9 1 1 12 51 20|, <0 2 3 2 -3 2|]

POTE generator: ~36/35 = 49.486

Vals: Template:Val list

Badness: 0.030325

Trinealimmal

Comma list: 2401/2400, 4375/4374, 2097152/2096325

Mapping: [<27 1 0 34 177|, <0 2 3 2 -4|]

POTE generator: ~6/5 = 315.644

Vals: Template:Val list

Badness: 0.029812

Gamera

Comma list: 4375/4374, 589824/588245

Mapping: [<1 6 10 3|, <0 -23 -40 -1|]

Wedgie: <<23 40 1 10 -63 -110||

POTE generator ~8/7 = 230.336

Vals: Template:Val list

Badness: 0.037648

Hemigamera

Comma list: 3025/3024, 4375/4374, 589824/588245

Mapping: [<2 12 20 6 5|, <0 -23 -40 -1 5|]

POTE generator: ~8/7 = 230.3370

Vals: Template:Val list

Badness: 0.040955

13-limit

Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024

Mapping: [<2 12 20 6 5 17|, <0 -23 -40 -1 5 -25|]

POTE generator: ~8/7 = 230.3373

Vals: Template:Val list

Badness: 0.020416

Supermajor

The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.0002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of <<37 46 75 -13 15 45||. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.

Comma list: 4375/4374, 52734375/52706752

Mapping: [<1 15 19 30|, <0 -37 -46 -75|]

Wedgie: <<37 46 75 -13 15 45||

POTE generator: ~9/7 = 435.082

Vals: Template:Val list

Badness: 0.010836

Semisupermajor

Comma list: 3025/3024, 4375/4374, 35156250/35153041

Mapping: [<2 30 38 60 41|, <0 -37 -46 -75 -47|]

POTE generator: ~9/7 = 435.082

EDOs: Template:Val list

Badness: 0.012773

Enneadecal

Enneadecal temperament tempers out the enneadeca, |-14 -19 19>, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19edo up to just ones. 171edo is a good tuning for either the 5 or 7 limits, and 494edo shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665edo for a tuning.

Comma list: 4375/4374, 703125/702464

Mapping: [<19 0 14 -37|, <0 1 1 3|]

Wedgie: <<19 19 57 -14 37 79||

Mapping generators: ~28/27, ~3

POTE generator: ~3/2 = 701.880

Vals: Template:Val list

Badness: 0.010954

Hemienneadecal

Comma list: 3025/3024, 4375/4374, 234375/234256

Mapping: [<38 0 28 -74 11|, <0 1 1 3 2|]

POTE generator: ~3/2 = 701.881

Vals: Template:Val list

Badness: 0.009985

13-limit

Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213

Mapping: [<38 0 28 -74 11 502|, <0 1 1 3 2 -6|]

POTE generator: ~3/2 = 701.986

Vals: Template:Val list

Badness: 0.030391

Deca

Comma list: 4375/4374, 165288374272/164794921875

Mapping: [<10 4 9 2|, <0 5 6 11|]

Wedgie: <<50 60 110 -21 34 87||

POTE generator: ~6/5 = 315.577

Vals: Template:Val list

Badness: 0.080637

11-limit

Comma list: 3025/3024, 4375/4374, 422576/421875

Mapping: [<10 4 9 2 18|, <0 5 6 11 7|]

POTE generator: ~6/5 = 315.582

Vals: Template:Val list

Badness: 0.024329

13-limit

Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374

Mapping: [<10 4 9 2 18 37|, <0 5 6 11 7 0|]

POTE generator: ~6/5 = 315.602

Vals: Template:Val list

Badness: 0.016810

Mitonic

Comma list: 4375/4374, 2100875/2097152

Mapping: [<1 -1 -3 6|, <0 17 35 -21|]

Wedgie: <<17 35 -21 16 -81 -147||

POTE generator: ~10/9 = 182.458

Vals: Template:Val list

Badness: 0.025184

Abigail

Comma list: 4375/4374, 2147483648/2144153025

Mapping: [<2 7 13 -1|, <0 -11 -24 19|]

Wedgie: <<22 48 -38 25 -122 -223||

POTE generator: ~6912/6125 = 208.899

Vals: Template:Val list

Badness: 0.037000

11-limit

Comma list: 3025/3024, 4375/4374, 20614528/20588575

Mapping: [<2 7 13 -1 1|, <0 -11 -24 19 17|]

POTE generator: ~1155/1024 = 208.901

Vals: Template:Val list

Badness: 0.012860

13-limit

Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095

Map: [<2 7 13 -1 1 -2|, <0 -11 -24 19 17 27|]

POTE generator: ~44/39 = 208.903

Vals: Template:Val list

Badness: 0.008856

Semidimi

The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit |-12 -73 55> and 7-limit 3955078125/3954653486, as well as 4375/4374.

Comma: |-12 -73 55>

Mapping: [<1 36 48|, <0 -55 -73|]

Wedgie: <<55 73 -12||

POTE generator: ~162/125 = 449.1269

Vals: Template:Val list

Badness: 0.754866

7-limit

Comma list: 4375/4374, 3955078125/3954653486

Mapping: [<1 36 48 61|, <0 -55 -73 -93|]

Wedgie: <<55 73 93 -12 -7 11||

POTE generator: ~35/27 = 449.1270

Vals: Template:Val list

Badness: 0.015075

Brahmagupta

The brahmagupta temperament has a period of 1/7 octave, tempering out the akjaysma, |47 -7 -7 -7> = 140737488355328 / 140710042265625.

Comma list: 4375/4374, 70368744177664/70338939985125

Mapping: [<7 2 -8 53|, <0 3 8 -11|]

Wedgie: <<21 56 -77 40 -181 -336||

POTE generator: ~27/20 = 519.716

Vals: Template:Val list

Badness: 0.029122

11-limit

Comma list: 4000/3993, 4375/4374, 131072/130977

Mapping: [<7 2 -8 53 3|, <0 3 8 -11 7|]

POTE generator: ~27/20 = 519.704

Vals: Template:Val list

Badness: 0.052190

13-limit

Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374

Mapping: [<7 2 -8 53 3 35|, <0 3 8 -11 7 -3|]

POTE generator: ~27/20 = 519.706

Vals: Template:Val list

Badness: 0.023132

Quasithird

Comma: |55 -64 20>

Mapping: [<4 0 -11|, <0 5 16|]

Wedgie: <<20 64 55||

POTE generator: ~1594323/1280000 = 380.395

Vals: Template:Val list

Badness: 0.099519

7-limit

Comma list: 4375/4374, 1153470752371588581/1152921504606846976

Mapping: [<4 0 -11 48|, <0 5 16 -29|]

Wedgie: <<20 64 -116 55 -240 -449||

POTE generator: ~5103/4096 = 380.388

Vals: Template:Val list

Badness: 0.061813

11-limit

Comma list: 3025/3024, 4375/4374, 4296700485/4294967296

Mapping: [<4 0 -11 48 43|, <0 5 16 -29 -23|]

POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)

Vals: Template:Val list

Badness: 0.021125

13-limit

Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195

Mapping: [<4 0 -11 48 43 11|, <0 5 16 -29 -23 3|]

POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)

Vals: Template:Val list

Badness: 0.029501

Semidimfourth

Comma: |7 41 -31>

Mapping: [<1 21 28|, <0 -31 -41|]

Wedgie: <<31 41 -7||

POTE generator: ~162/125 = 448.449

Vals: Template:Val list

Badness: 0.233376

7-limit

Comma list: 4375/4374, 235298/234375

Mapping: [<1 21 28 36|, <0 -31 -41 -53|]

Wedgie: <<31 41 53 -7 -3 8||

POTE generator: ~35/27 = 448.456

Vals: Template:Val list

Badness: 0.055249

Neusec

Comma list: 3025/3024, 4375/4374, 235298/234375

Mapping: [<2 11 15 19 15|, <0 -31 -41 -53 -32|]

POTE generator: ~12/11 = 151.547

Vals: Template:Val list

Badness: 0.059127

13-limit

Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374

Mapping: [<2 11 15 19 15 17|, <0 -31 -41 -53 -32 -38|]

POTE generator: ~12/11 = 151.545

Vals: Template:Val list

Badness: 0.030941

Acrokleismic

Comma list: 4375/4374, 2202927104/2197265625

Mapping: [<1 10 11 27|, <0 -32 -33 -92|]

Wedgie: <<32 33 92 -22 56 121||

POTE generator: ~6/5 = 315.557

Vals: Template:Val list

Badness: 0.056184

11-limit

Comma list: 4375/4374, 41503/41472, 172032/171875

Mapping: [<1 10 11 27 -16|, <0 -32 -33 -92 74|]

POTE generator: ~6/5 = 315.558

Vals: Template:Val list

Badness: 0.036878

13-limit

Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976

Mapping: [<1 10 11 27 -16 25|, <0 -32 -33 -92 74 -81|]

POTE generator: ~6/5 = 315.557

Vals: Template:Val list

Badness: 0.026818

Counteracro

Comma list: 4375/4374, 5632/5625, 117649/117612

Mapping: [<1 10 11 27 55|, <0 -32 -33 -92 -196|]

POTE generator: ~6/5 = 315.553

Vals: Template:Val list

Badness: 0.042572

13-limit

Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374

Mapping: [<1 10 11 27 55 25|, <0 -32 -33 -92 -196 -81|]

POTE generator: ~6/5 = 315.554

Vals: Template:Val list

Badness: 0.026028

Seniority

Comma list: 4375/4374, 201768035/201326592

Mapping: [<1 11 19 2|, <0 -35 -62 3|]

Wedgie: <<35 62 -3 17 -103 -181||

POTE generator: ~3087/2560 = 322.804

Vals: Template:Val list

Badness: 0.044877

Orga

Comma list: 4375/4374, 54975581388800/54936068900769

Mapping: [<2 21 36 5|, <0 -29 -51 1|]

Wedgie: <<58 102 -2 27 -166 -291||

POTE generator: ~8/7 = 231.104

Vals: Template:Val list

Badness: 0.040236

11-limit

Comma list: 3025/3024, 4375/4374, 5767168/5764801

Mapping: [<2 21 36 5 2|, <0 -29 -51 1 8|]

POTE generator: ~8/7 = 231.103

Vals: Template:Val list

Badness: 0.016188

13-limit

Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360

Mapping: [<2 21 36 5 2 24|, <0 -29 -51 1 8 -27|]

POTE generator: ~8/7 = 231.103

Vals: Template:Val list

Badness: 0.021762

Quatracot

Comma list: 4375/4374, 1483154296875/1473173782528

Mapping: [<2 7 7 23|, <0 -13 -8 -59|]

Wedgie: <<26 16 118 -35 114 229||

POTE generator: ~448/405 = 176.805

Vals: Template:Val list

Badness: 0.175982

11-limit

Comma list: 3025/3024, 4375/4374, 1265625/1261568

Mapping: [<2 7 7 23 19|, <0 -13 -8 -59 -41|]

POTE generator: ~448/405 = 176.806

Vals: Template:Val list

Badness: 0.041043

13-limit

Comma list: 625/624, 729/728, 1575/1573, 2200/2197

Mapping: [<2 7 7 23 19 13|, <0 -13 -8 -59 -41 -19|]

POTE generator: ~195/176 = 176.804

Vals: Template:Val list

Badness: 0.022643

Octoid

Comma list: 4375/4374, 16875/16807

Tuning ranges:

  • valid range: [578.571, 600.000] (27\56 to 4\8)
  • nice range: [582.512, 584.359]
  • strict range: [582.512, 584.359]

Mapping: [<8 1 3 3|, <0 3 4 5|]

Wedgie: <<24 32 40 -5 -4 3||

Mapping generators: ~49/45, ~7/5

POTE generator: ~7/5 = 583.940

Vals: Template:Val list

Badness: 0.042670

11-limit

Comma list: 540/539, 1375/1372, 4000/3993

Tuning ranges:

  • valid range: [581.250, 586.364] (31\64, 43\88)
  • nice range: [582.512, 585.084]
  • strict range: [582.512, 585.084]

Mapping: [<8 1 3 3 16|, <0 3 4 5 3|]

POTE generator: ~7/5 = 583.962

Vals: Template:Val list

Badness: 0.014097

13-limit

Comma list: 540/539, 1375/1372, 4000/3993, 625/624

Mapping: [<8 1 3 3 16 -21|, <0 3 4 5 3 13|]

POTE generator: ~7/5 = 583.905

Vals: Template:Val list

Badness: 0.015274

Music

Octopus

Comma list: 169/168, 325/324, 364/363, 540/539

Mapping: [<8 1 3 3 16 14|, <0 3 4 5 3 4|]

POTE generator: ~7/5 = 583.892

Vals: Template:Val list

Badness: 0.021679

Amity

The generator for amity temperament is the acute minor third, which means an ordinary 6/5 minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament, or by its wedgie, <<5 13 -17 9 -41 -76||. 99edo is a good tuning for amity, with generator 28/99, and MOS of 11, 18, 25, 32, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.

In the 5-limit amity is a genuine microtemperament, with 58/205 being a possible tuning. Another good choice is (64/5)^(1/13), which gives pure major thirds.

Comma: 1600000/1594323

Mapping: [<1 3 6|, <0 -5 -13|]

POTE generator: ~243/200 = 339.519

Vals: Template:Val list

Badness: 0.021960

7-limit

Comma list: 4375/4374, 5120/5103

Mapping: [<1 3 6 -2|, <0 -5 -13 17|]

Wedgie: <<5 13 -17 9 -41 -76||

POTE generator: ~128/105 = 339.432

Vals: Template:Val list

Badness: 0.023649

11-limit

Comma list: 540/539, 4375/4374, 5120/5103

Mapping: [<1 3 6 -2 21|, <0 -5 -13 17 -62|]

POTE generator: ~128/105 = 339.464

Vals: Template:Val list

Badness: 0.031506

13-limit

Comma list: 352/351, 540/539, 625/624, 847/845

Mapping: [<1 3 6 -2 21 17|, <0 -5 -13 17 -62 -47|]

POTE generator: ~128/105 = 339.481

Vals: Template:Val list

Badness: 0.028008

Hitchcock

Comma list: 121/120, 176/175, 2200/2187

Mapping: [<1 3 6 -2 6|, <0 -5 -13 17 -9|]

POTE generator: ~11/9 = 339.390

Vals: Template:Val list

Badness: 0.035187

13-limit

Comma list: 121/120, 169/168, 176/175, 325/324

Mapping: [<1 3 6 -2 6 2|, <0 -5 -13 17 -9 6|]

POTE generator: ~11/9 = 339.419

Vals: Template:Val list

Badness: 0.022448

Hemiamity

Comma list: 3025/3024, 4375/4374, 5120/5103

Mapping: [<2 1 -1 13 13|, <0 5 13 -17 -14|]

POTE generator: ~64/55 = 339.439

Vals: Template:Val list

Badness: 0.031307

Parakleismic

In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13>, with the 118EDO tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being <<13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie <<13 14 35 -36 -8 19 -102 42 -132 -222|| adding 385/384. For the 7-limit 99EDO may be preferred, but in the 11-limit it is best to stick with 118.

Comma: 124440064/1220703125

Mapping: [<1 5 6|, <0 -13 -14|]

POTE generator: ~6/5 = 315.240

Vals: Template:Val list

Badness: 0.043279

7-limit

Comma list: 3136/3125, 4375/4374

Mapping: [<1 5 6 12|, <0 -13 -14 -35|]

Wedgie: <<13 14 35 -8 19 42||

POTE generator: ~6/5 = 315.181

Vals: Template:Val list

Badness: 0.027431

11-limit

Comma list: 385/384, 3136/3125, 4375/4374

Mapping: [<1 5 6 12 -6|, <0 -13 -14 -35 36|]

POTE generator: ~6/5 = 315.251

Vals: Template:Val list

Badness: 0.049711

Parkleismic

Comma list: 176/175, 1375/1372, 2200/2187

Mapping: [<1 5 6 12 20|, <0 -13 -14 -35 -63|]

POTE generator: ~6/5 = 315.060

Vals: Template:Val list

Badness: 0.055884

13-limit

Comma list: 169/168, 176/175, 325/324, 1375/1372

Mapping: [<1 5 6 12 20 10|, <0 -13 -14 -35 -63 -24|]

POTE generator: ~6/5 = 315.075

Vals: Template:Val list

Badness: 0.036559

Paradigmic

Comma list: 540/539, 896/891, 3136/3125

Mapping: [<1 5 6 12 -1|, <0 -13 -14 -35 17|]

POTE generator: ~6/5 = 315.096

Vals: Template:Val list

Badness: 0.041720

13-limit

Comma list: 169/168, 325/324, 540/539, 832/825

Mapping: [<1 5 6 12 -1 10|, <0 -13 -14 -35 17 -24|]

POTE generator: ~6/5 = 315.080

Vals: Template:Val list

Badness: 0.035781

Semiparakleismic

Comma list: 3025/3024, 3136/3125, 4375/4374

Mapping: [<2 10 12 24 19|, <0 -13 -14 -35 -23|]

POTE generator: ~6/5 = 315.181

Vals: Template:Val list

Badness: 0.034208

13-limit

Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374

Mapping: [<2 10 12 24 19 -1|, <0 -13 -14 -35 -23 16|]

POTE generator: ~6/5 = 315.156

Vals: Template:Val list

Badness: 0.033775

Gentsemiparakleismic

Comma list: 169/168, 325/324, 364/363, 3136/3125

Mapping: [<2 10 12 24 19 20|, <0 -13 -14 -35 -23 -24|]

POTE generator: ~6/5 = 315.184

Vals: Template:Val list

Badness: 0.040467

Quincy

Commas: 4375/4374, 823543/819200

POTE generator: ~1728/1715 = 16.613

Map: [<1 2 2 3|, <0 -30 -49 -14|]

EDOs: 72, 217, 289

Badness: 0.0797

11-limit

Commas: 441/440, 4000/3993, 41503/41472

POTE generator: ~100/99 = 16.613

Map: [<1 2 2 3 4|, <0 -30 -49 -14 -39|]

EDOs: 72, 217, 289

Badness: 0.0309

13-limit

Commas: 364/363, 441/440, 676/675, 4375/4374

POTE generator: ~100/99 = 16.602

Map: [<1 2 2 3 4 5|, <0 -30 -49 -14 -39 -94|]

EDOs: 72, 145, 217, 289

Badness: 0.0239

17-limit

Commas: 364/363, 441/440, 595/594, 1001/1000, 1156/1155

POTE generator: ~100/99 = 16.602

Map: [<1 2 2 3 4 5 5|, <0 -30 -49 -14 -39 -94 -66|]

EDOs: 72, 145, 217, 289

Badness: 0.0147

19-limit

Commas: 343/342, 364/363, 441/440, 595/594, 676/675, 2601/2600

POTE generator: ~100/99 = 16.594

Map: [<1 2 2 3 4 5 5 4|, <0 -30 -49 -14 -39 -94 -66 18|]

EDOs: 72, 145, 217

Badness: 0.0152

Chlorine

The name of chlorine temperament comes from Chlorine, the 17th element.

Chlorine microtemperament has a period of 1/17 octave. It tempers out the septendecima, |-52 -17 34>, by which 17 chromatic semitones (25/24) fall short of an octave. Possible tunings for chlorine are 289, 323, and 612 EDOs, though its hardly likely anyone could tell the difference. In the 7-limit, 289&323 temperament tempers out |-49 4 22 -3> as well as the ragisma.

Comma: |-52 -17 34>

POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2687

Map: [<17 26 39|, <0 2 1|]

EDOs: 34, 289, 323, 612, 901

Badness: 0.0771

7-limit

Commas: 4375/4374, 193119049072265625/193091834023510016

POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2936

Map: [<17 26 39 43|, <0 2 1 10|]

EDOs: 34d, 289, 323, 612, 935, 1547

Badness: 0.0417

11-limit

Commas: 4375/4374, 41503/41472, 1879453125/1879048192

POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2690

Map: [<17 26 39 43 64|, <0 2 1 10 -11|]

EDOs: 34de, 289, 323, 612, 901

Badness: 0.0637

Monzism

The monzism temperament (53&612, named by Xenllium) is a rank-two temperament which tempers out the monzisma, [54 -37 2 and the nanisma, [109 -67 0 -1, as well as the ragisma, 4375/4374.

Comma list: 4375/4374, [-55 30 2 1

Mapping: [<1 2 10 -25|, <0 -2 -37 134|]

POTE generator: ~310078125/268435456 = 249.0207

Vals: Template:Val list

Badness: 0.046569

11-limit

Comma list: 4375/4374, 41503/41472, 184549376/184528125

Mapping: [<1 2 10 -25 46|, <0 -2 -37 134 -205|]

POTE generator: ~231/200 = 249.0193

Vals: Template:Val list

Badness: 0.057083

13-limit

Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625

Mapping: [<1 2 10 -25 46 23|, <0 -2 -37 134 -205 -93|]

POTE generator: ~231/200 = 249.0199

Vals: Template:Val list

Badness: 0.053780