84edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m Todo
Cleanup
Line 1: Line 1:
{{Infobox ET}}{{todo|expand}}
{{Infobox ET}}
'''[[Edt|Division of the third harmonic]] into 84 equal parts''' (84EDT) is practically identical to [[53edo|53 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched and the step size is about 22.6423 cents.
{{ED intro}}


== Theory ==
== Theory ==
This tuning tempers out 99/98 and 121/120 in the 11-limit; and 120/119 in the 17-limit.
84edt is practically identical to [[53edo]], but with the 3/1 rather than the [[2/1]] being just. The octave is about 0.0430 cents stretched.
 
=== Harmonics ===
{{Harmonics in equal|84|3|1|intervals=integer}}
{{Harmonics in equal|84|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 84edt (continued)}}


== Intervals ==
== Intervals ==
{{Interval table}}
{{Interval table}}
== Harmonics ==
{{Harmonics in equal
| steps = 84
| num = 3
| denom = 1
| intervals = integer
}}
{{Harmonics in equal
| steps = 84
| num = 3
| denom = 1
| start = 12
| collapsed = 1
| intervals = integer
}}
[[Category:Edt]]
[[Category:Edonoi]]

Revision as of 10:34, 24 March 2025

← 83edt 84edt 85edt →
Prime factorization 22 × 3 × 7
Step size 22.6423 ¢ 
Octave 53\84edt (1200.04 ¢)
(convergent)
Consistency limit 10
Distinct consistency limit 10

84 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 84edt or 84ed3), is a nonoctave tuning system that divides the interval of 3/1 into 84 equal parts of about 22.6 ¢ each. Each step represents a frequency ratio of 31/84, or the 84th root of 3.

Theory

84edt is practically identical to 53edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.0430 cents stretched.

Harmonics

Approximation of harmonics in 84edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.04 +0.00 +0.09 -1.31 +0.04 +4.88 +0.13 +0.00 -1.27 -7.77 +0.09
Relative (%) +0.2 +0.0 +0.4 -5.8 +0.2 +21.6 +0.6 +0.0 -5.6 -34.3 +0.4
Steps
(reduced)
53
(53)
84
(0)
106
(22)
123
(39)
137
(53)
149
(65)
159
(75)
168
(0)
176
(8)
183
(15)
190
(22)
Approximation of harmonics in 84edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.63 +4.92 -1.31 +0.17 +8.43 +0.04 -2.99 -1.22 +4.88 -7.73 +5.88 +0.13
Relative (%) -11.6 +21.7 -5.8 +0.8 +37.2 +0.2 -13.2 -5.4 +21.6 -34.1 +26.0 +0.6
Steps
(reduced)
196
(28)
202
(34)
207
(39)
212
(44)
217
(49)
221
(53)
225
(57)
229
(61)
233
(65)
236
(68)
240
(72)
243
(75)

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 22.6 15.5
2 45.3 31 37/36, 38/37, 39/38, 40/39, 41/40
3 67.9 46.4 25/24, 26/25, 27/26
4 90.6 61.9 19/18, 20/19, 39/37
5 113.2 77.4 16/15
6 135.9 92.9 13/12, 27/25, 40/37
7 158.5 108.3 23/21, 34/31
8 181.1 123.8 10/9
9 203.8 139.3 9/8
10 226.4 154.8 33/29, 41/36
11 249.1 170.2 15/13, 37/32
12 271.7 185.7 41/35
13 294.4 201.2 32/27
14 317 216.7 6/5
15 339.6 232.1 28/23, 39/32
16 362.3 247.6 16/13, 37/30
17 384.9 263.1 5/4
18 407.6 278.6 19/15
19 430.2 294 32/25, 41/32
20 452.8 309.5 13/10
21 475.5 325 25/19, 29/22
22 498.1 340.5 4/3
23 520.8 356 23/17, 27/20
24 543.4 371.4 26/19, 37/27, 41/30
25 566.1 386.9 18/13, 25/18
26 588.7 402.4 38/27
27 611.3 417.9 27/19, 37/26
28 634 433.3 13/9, 36/25
29 656.6 448.8 19/13
30 679.3 464.3 34/23, 37/25, 40/27
31 701.9 479.8 3/2
32 724.6 495.2 35/23, 38/25, 41/27
33 747.2 510.7 20/13, 37/24
34 769.8 526.2 25/16, 39/25
35 792.5 541.7 30/19
36 815.1 557.1 8/5
37 837.8 572.6 13/8
38 860.4 588.1 23/14
39 883.1 603.6 5/3
40 905.7 619 27/16
41 928.3 634.5 41/24
42 951 650 26/15
43 973.6 665.5
44 996.3 681 16/9
45 1018.9 696.4 9/5
46 1041.5 711.9 31/17
47 1064.2 727.4 24/13, 37/20
48 1086.8 742.9 15/8
49 1109.5 758.3 19/10
50 1132.1 773.8 25/13
51 1154.8 789.3 37/19, 39/20
52 1177.4 804.8
53 1200 820.2 2/1
54 1222.7 835.7
55 1245.3 851.2 37/18, 39/19, 41/20
56 1268 866.7 25/12, 27/13
57 1290.6 882.1 19/9, 40/19
58 1313.3 897.6 32/15
59 1335.9 913.1 13/6
60 1358.5 928.6
61 1381.2 944 20/9
62 1403.8 959.5 9/4
63 1426.5 975 41/18
64 1449.1 990.5 30/13, 37/16
65 1471.8 1006
66 1494.4 1021.4
67 1517 1036.9 12/5
68 1539.7 1052.4 39/16
69 1562.3 1067.9 32/13, 37/15
70 1585 1083.3 5/2
71 1607.6 1098.8 38/15
72 1630.2 1114.3 41/16
73 1652.9 1129.8 13/5
74 1675.5 1145.2 29/11
75 1698.2 1160.7 8/3
76 1720.8 1176.2 27/10
77 1743.5 1191.7 41/15
78 1766.1 1207.1 25/9, 36/13
79 1788.7 1222.6
80 1811.4 1238.1 37/13
81 1834 1253.6 26/9
82 1856.7 1269 38/13
83 1879.3 1284.5
84 1902 1300 3/1