71zpi: Difference between revisions
Contribution (talk | contribs) |
Contribution (talk | contribs) No edit summary |
||
Line 50: | Line 50: | ||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | {| class="wikitable center-1 right-2 left-3 center-4 center-5" | ||
|+ style="white-space:nowrap" | Intervals in 71zpi | |||
|- | |- | ||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 33-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
* '''Bold:''' relative error < 16.667 % | * '''Bold:''' relative error < 16.667 % | ||
Line 75: | Line 75: | ||
| 1 | | 1 | ||
| 59.333 | | 59.333 | ||
| '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small> | | '''[[33/32]]''', '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small> | ||
| v<sup>7</sup>m2 | | v<sup>7</sup>m2 | ||
| 9 | | 9 | ||
Line 81: | Line 81: | ||
| 2 | | 2 | ||
| 118.666 | | 118.666 | ||
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small> | | <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], [[33/31]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small> | ||
| ^^m2 | | ^^m2 | ||
| 18 | | 18 | ||
Line 93: | Line 93: | ||
| 4 | | 4 | ||
| 237.332 | | 237.332 | ||
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small>[[29/25]]</small>, <small><small><small>[[7/6]]</small></small></small> | | <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[33/29]], '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small>[[29/25]]</small>, <small><small><small>[[7/6]]</small></small></small> | ||
| ^<sup>6</sup>M2 | | ^<sup>6</sup>M2 | ||
| 36 | | 36 | ||
Line 99: | Line 99: | ||
| 5 | | 5 | ||
| 296.665 | | 296.665 | ||
| <small>[[27/23]]</small>, <small>[[20/17]]</small>, '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small> | | <small>[[27/23]]</small>, <small>[[20/17]]</small>, [[33/28]], '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small> | ||
| vm3 | | vm3 | ||
| 45 | | 45 | ||
Line 111: | Line 111: | ||
| 7 | | 7 | ||
| 415.331 | | 415.331 | ||
| <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small>[[9/7]]</small>, <small><small><small>[[31/24]]</small></small></small> | | <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[33/26]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small>[[9/7]]</small>, <small><small><small>[[31/24]]</small></small></small> | ||
| ^^^M3 | | ^^^M3 | ||
| 63 | | 63 | ||
Line 117: | Line 117: | ||
| 8 | | 8 | ||
| 474.664 | | 474.664 | ||
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], [[17/13]], '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, <small><small>[[4/3]]</small></small> | | <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], [[17/13]], '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, '''[[33/25]]''', <small><small>[[4/3]]</small></small> | ||
| v<sup>4</sup>4 | | v<sup>4</sup>4 | ||
| 72 | | 72 | ||
Line 135: | Line 135: | ||
| 11 | | 11 | ||
| 652.663 | | 652.663 | ||
| <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''<u>[[19/13]]'''</u>, [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small> | | <small><small><small>[[33/23]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''<u>[[19/13]]'''</u>, [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small> | ||
| ~5 | | ~5 | ||
| 99 | | 99 | ||
Line 159: | Line 159: | ||
| 15 | | 15 | ||
| 889.995 | | 889.995 | ||
| <small><small><small>[[28/17]]</small></small></small>, '''[[5/3]]''', [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small> | | <small><small><small>[[28/17]]</small></small></small>, <small><small>[[33/20]]</small></small>, '''[[5/3]]''', [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small> | ||
| vM6 | | vM6 | ||
| 135 | | 135 | ||
Line 165: | Line 165: | ||
| 16 | | 16 | ||
| 949.328 | | 949.328 | ||
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, <small>[[7/4]]</small> | | <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, '''[[33/19]]''', <small>[[7/4]]</small> | ||
| v<sup>6</sup>A6, ^<sup>6</sup>d7 | | v<sup>6</sup>A6, ^<sup>6</sup>d7 | ||
| 144 | | 144 | ||
Line 183: | Line 183: | ||
| 19 | | 19 | ||
| 1127.327 | | 1127.327 | ||
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''<u>[[25/13]]'''</u>, '''[[27/14]]''', [[29/15]], <small>[[31/16]]</small> | | <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''<u>[[25/13]]'''</u>, '''[[27/14]]''', [[29/15]], <small>[[31/16]]</small>, <small><small>[[33/17]]</small></small> | ||
| ^<sup>5</sup>M7 | | ^<sup>5</sup>M7 | ||
| 171 | | 171 | ||
Line 195: | Line 195: | ||
| 21 | | 21 | ||
| 1245.993 | | 1245.993 | ||
| [[31/15]], [[29/14]], <small>[[27/13]]</small>, <small><small>[[25/12]]</small></small> | | '''[[33/16]]''', [[31/15]], [[29/14]], <small>[[27/13]]</small>, <small><small>[[25/12]]</small></small> | ||
| ^<sup>7</sup>1 +1 oct | | ^<sup>7</sup>1 +1 oct | ||
| 189 | | 189 | ||
Line 219: | Line 219: | ||
| 25 | | 25 | ||
| 1483.325 | | 1483.325 | ||
| <small>[[7/3]]</small>, '''[[26/11]]''', [[19/8]], <small><small>[[31/13]]</small></small> | | <small>[[7/3]]</small>, '''<u>[[33/14]]'''</u>, '''[[26/11]]''', [[19/8]], <small><small>[[31/13]]</small></small> | ||
| vvvm3 +1 oct | | vvvm3 +1 oct | ||
| 225 | | 225 | ||
Line 231: | Line 231: | ||
| 27 | | 27 | ||
| 1601.990 | | 1601.990 | ||
| <small>[[5/2]]</small>, <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small> | | <small>[[5/2]]</small>, [[33/13]], <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small> | ||
| ^M3 +1 oct | | ^M3 +1 oct | ||
| 243 | | 243 | ||
Line 279: | Line 279: | ||
| 35 | | 35 | ||
| 2076.654 | | 2076.654 | ||
| <small>[[23/7]]</small>, '''[[10/3]]''', <small><small><small>[[27/8]]</small></small></small> | | <small>[[23/7]]</small>, '''[[33/10]]''', '''[[10/3]]''', <small><small><small>[[27/8]]</small></small></small> | ||
| vvvM6 +1 oct | | vvvM6 +1 oct | ||
| 315 | | 315 | ||
Line 315: | Line 315: | ||
| 41 | | 41 | ||
| 2432.652 | | 2432.652 | ||
| <small><small><small>[[29/7]]</small></small></small> | | <small><small>[[33/8]]</small></small>, <small><small><small>[[29/7]]</small></small></small> | ||
| ^<sup>5</sup>1 +2 oct | | ^<sup>5</sup>1 +2 oct | ||
| 369 | | 369 | ||
Line 339: | Line 339: | ||
| 45 | | 45 | ||
| 2669.984 | | 2669.984 | ||
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, <small><small><small>[[19/4]]</small></small></small> | | <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, [[33/7]], <small><small><small>[[19/4]]</small></small></small> | ||
| v<sup>5</sup>m3 +2 oct | | v<sup>5</sup>m3 +2 oct | ||
| 405 | | 405 | ||
Line 399: | Line 399: | ||
| 55 | | 55 | ||
| 3263.314 | | 3263.314 | ||
| <small><small>[[13/2]]</small></small>, <small><small>[[20/3]]</small></small> | | <small><small>[[13/2]]</small></small>, '''<u>[[33/5]]'''</u>, <small><small>[[20/3]]</small></small> | ||
| v<sup>5</sup>M6 +2 oct | | v<sup>5</sup>M6 +2 oct | ||
| 495 | | 495 | ||
Line 441: | Line 441: | ||
| 62 | | 62 | ||
| 3678.645 | | 3678.645 | ||
| '''[[25/3]]''', <small><small><small>[[17/2]]</small></small></small> | | <small><small><small>[[33/4]]</small></small></small>, '''[[25/3]]''', <small><small><small>[[17/2]]</small></small></small> | ||
| v<sup>4</sup>m2 +3 oct | | v<sup>4</sup>m2 +3 oct | ||
| 558 | | 558 | ||
Line 561: | Line 561: | ||
| 82 | | 82 | ||
| 4865.304 | | 4865.304 | ||
| | | [[33/2]] | ||
| v<sup>6</sup>m2 +4 oct | | v<sup>6</sup>m2 +4 oct | ||
| 738 | | 738 | ||
Line 678: | Line 678: | ||
| v1 +5 oct | | v1 +5 oct | ||
| 909 | | 909 | ||
|- | |||
| 102 | |||
| 6051.964 | |||
| '''<u>[[33/1]]'''</u> | |||
| v<sup>6</sup>A1 +5 oct, ^<sup>6</sup>d2 +5 oct | |||
| 918 | |||
|} | |} | ||
== Approximation to JI == | == Approximation to JI == | ||
The following | |||
=== Interval mappings === | |||
The following tables show how 33-integer-limit intervals are represented in 71zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | ||
|+ style="white-space: nowrap;" | | |+ style="white-space: nowrap;" | 33-integer-limit intervals in 71zpi (by direct approximation) | ||
|- | |- | ||
! Ratio | ! Ratio | ||
Line 691: | Line 700: | ||
|- | |- | ||
| [[14/1]] | | [[14/1]] | ||
| | | -0.186 | ||
| | | -0.314 | ||
|- | |- | ||
| [[11/5]] | | [[11/5]] | ||
| | | -0.346 | ||
| | | -0.583 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/8]]'' | | ''[[17/8]]'' | ||
| '' | | ''+0.370'' | ||
| '' | | ''+0.624'' | ||
|- | |- | ||
| [[31/22]] | | [[31/22]] | ||
| | | -0.388 | ||
| | | -0.654 | ||
|- | |- | ||
| [[21/13]] | | [[21/13]] | ||
| | | +0.408 | ||
| | | +0.688 | ||
|- | |- | ||
| [[25/19]] | | [[25/19]] | ||
| | | -0.451 | ||
| | | -0.759 | ||
|- | |- | ||
| [[26/3]] | | [[26/3]] | ||
| | | -0.595 | ||
| | | -1.003 | ||
|- | |- | ||
| [[30/29]] | | [[30/29]] | ||
| | | +0.641 | ||
| | | +1.081 | ||
|- | |- | ||
| [[31/10]] | | [[31/10]] | ||
| | | -0.733 | ||
| | | -1.236 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/9]]'' | | ''[[32/9]]'' | ||
| '' | | ''-0.770'' | ||
| '' | | ''-1.297'' | ||
|- | |- | ||
| [[15/14]] | | [[15/14]] | ||
| | | -0.777 | ||
| | | -1.309 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[19/16]]'' | | ''[[19/16]]'' | ||
| '' | | ''-0.848'' | ||
| '' | | ''-1.429'' | ||
|- | |- | ||
| [[15/1]] | | [[15/1]] | ||
| | | -0.963 | ||
| | | -1.623 | ||
|- | |- | ||
| [[23/12]] | | [[23/12]] | ||
| | | +1.007 | ||
| | | +1.698 | ||
|- | |- | ||
| [[27/10]] | | [[27/10]] | ||
| | | +1.105 | ||
| | | +1.863 | ||
|- | |- | ||
| [[33/14]] | |||
| -1.123 | |||
| -1.892 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | | ''[[25/16]]'' | ||
| '' | | ''-1.299'' | ||
| '' | | ''-2.189'' | ||
|- | |||
| [[33/1]] | |||
| -1.309 | |||
| -2.206 | |||
|- | |- | ||
| [[29/28]] | | [[29/28]] | ||
| | | -1.418 | ||
| | | -2.390 | ||
|- | |- | ||
| [[27/22]] | | [[27/22]] | ||
| | | +1.451 | ||
| | | +2.445 | ||
|- | |- | ||
| [[31/2]] | | [[31/2]] | ||
| | | +1.603 | ||
| | | +2.702 | ||
|- | |- | ||
| [[29/2]] | | [[29/2]] | ||
| | | -1.605 | ||
| | | -2.705 | ||
|- | |- | ||
| [[29/6]] | | [[29/6]] | ||
| | | +1.695 | ||
| | | +2.857 | ||
|- | |- | ||
| [[31/28]] | | [[31/28]] | ||
| | | +1.789 | ||
| | | +3.016 | ||
|- | |- | ||
| [[31/27]] | | [[31/27]] | ||
| | | -1.839 | ||
| | | -3.099 | ||
|- | |- | ||
| '''[[11/1]]''' | | '''[[11/1]]''' | ||
| ''' | | '''+1.991''' | ||
| ''' | | '''+3.355''' | ||
|- | |- | ||
| [[14/11]] | | [[14/11]] | ||
| | | -2.177 | ||
| | | -3.669 | ||
|- | |- | ||
| [[23/4]] | | [[23/4]] | ||
| | | -2.292 | ||
| | | -3.864 | ||
|- | |- | ||
| '''[[5/1]]''' | | '''[[5/1]]''' | ||
| ''' | | '''+2.336''' | ||
| ''' | | '''+3.938''' | ||
|- | |- | ||
| [[14/5]] | | [[14/5]] | ||
| | | -2.523 | ||
| | | -4.252 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/27]]'' | | ''[[32/27]]'' | ||
| '' | | ''+2.530'' | ||
| '' | | ''+4.264'' | ||
|- | |- | ||
| [[31/30]] | | [[31/30]] | ||
| | | +2.566 | ||
| -4. | | +4.325 | ||
|- | |||
| [[33/26]] | |||
| +2.586 | |||
| +4.358 | |||
|- | |- | ||
| [[25/11]] | | [[25/11]] | ||
| | | +2.682 | ||
| | | +4.520 | ||
|- | |- | ||
| [[26/9]] | | [[26/9]] | ||
| | | +2.705 | ||
| | | +4.559 | ||
|- | |- | ||
| [[19/5]] | | [[19/5]] | ||
| | | +2.787 | ||
| | | +4.697 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/7]]'' | | ''[[24/7]]'' | ||
| '' | | ''+2.858'' | ||
| '' | | ''+4.817'' | ||
|- | |- | ||
| [[26/15]] | | [[26/15]] | ||
| | | -2.931 | ||
| | | -4.940 | ||
|- | |- | ||
| [[15/11]] | | [[15/11]] | ||
| | | -2.954 | ||
| | | -4.979 | ||
|- | |- | ||
| [[14/3]] | | [[14/3]] | ||
| | | +3.113 | ||
| | | +5.247 | ||
|- | |- | ||
| [[19/11]] | | [[19/11]] | ||
| | | +3.133 | ||
| | | +5.280 | ||
|- | |- | ||
| [[31/29]] | | [[31/29]] | ||
| | | +3.208 | ||
| | | +5.406 | ||
|- | |- | ||
| '''[[3/1]]''' | | '''[[3/1]]''' | ||
| ''' | | '''-3.300''' | ||
| ''' | | '''-5.561''' | ||
|- | |- | ||
| [[27/2]] | | [[27/2]] | ||
| | | +3.442 | ||
| | | +5.800 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/13]]'' | | ''[[16/13]]'' | ||
| '' | | ''-3.474'' | ||
| '' | | ''-5.856'' | ||
|- | |- | ||
| [[29/22]] | | [[29/22]] | ||
| | | -3.595 | ||
| | | -6.060 | ||
|- | |- | ||
| [[28/27]] | | [[28/27]] | ||
| | | -3.628 | ||
| | | -6.115 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/5]]'' | | ''[[16/5]]'' | ||
| '' | | ''+3.635'' | ||
| '' | | ''+6.127'' | ||
|- | |- | ||
| [[33/5]] | |||
| -3.645 | |||
| -6.144 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | | ''[[24/17]]'' | ||
| '' | | ''-3.670'' | ||
| '' | | ''-6.185'' | ||
|- | |- | ||
| [[13/7]] | | [[13/7]] | ||
| | | -3.708 | ||
| | | -6.250 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[21/16]]'' | | ''[[21/16]]'' | ||
| '' | | ''+3.883'' | ||
| '' | | ''+6.544'' | ||
|- | |- | ||
| [[26/1]] | | [[26/1]] | ||
| | | -3.894 | ||
| | | -6.564 | ||
|- | |- | ||
| [[29/10]] | | [[29/10]] | ||
| | | -3.941 | ||
| | | -6.642 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/11]]'' | | ''[[16/11]]'' | ||
| '' | | ''+3.981'' | ||
| '' | | ''+6.709'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/3]]'' | | ''[[32/3]]'' | ||
| '' | | ''-4.069'' | ||
| '' | | ''-6.858'' | ||
|- | |- | ||
| [[19/13]] | | [[19/13]] | ||
| | | -4.323 | ||
| | | -7.285 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/31]]'' | | ''[[32/31]]'' | ||
| '' | | ''+4.369'' | ||
| '' | | ''+7.363'' | ||
|- | |- | ||
| [[10/9]] | | [[10/9]] | ||
| | | -4.405 | ||
| | | -7.424 | ||
|- | |- | ||
| [[23/20]] | | [[23/20]] | ||
| | | -4.629 | ||
| | | -7.801 | ||
|- | |- | ||
| [[25/1]] | | [[25/1]] | ||
| | | +4.673 | ||
| | | +7.875 | ||
|- | |- | ||
| [[21/19]] | | [[21/19]] | ||
| | | +4.731 | ||
| | | +7.974 | ||
|- | |- | ||
| [[22/9]] | | [[22/9]] | ||
| | | -4.750 | ||
| | | -8.006 | ||
|- | |- | ||
| [[25/13]] | | [[25/13]] | ||
| | | -4.773 | ||
| | | -8.045 | ||
|- | |- | ||
| [[25/14]] | | [[25/14]] | ||
| | | +4.859 | ||
| | | +8.190 | ||
|- | |- | ||
| [[31/6]] | | [[31/6]] | ||
| | | +4.903 | ||
| | | +8.263 | ||
|- | |- | ||
| [[29/18]] | | [[29/18]] | ||
| | | +4.995 | ||
| | | +8.418 | ||
|- | |- | ||
| [[29/27]] | | [[29/27]] | ||
| | | -5.046 | ||
| | | -8.505 | ||
|- | |- | ||
| '''[[19/1]]''' | | '''[[19/1]]''' | ||
| ''' | | '''+5.123''' | ||
| ''' | | '''+8.635''' | ||
|- | |- | ||
| [[31/9]] | | [[31/9]] | ||
| | | -5.138 | ||
| | | -8.660 | ||
|- | |- | ||
| [[25/21]] | | [[25/21]] | ||
| | | -5.182 | ||
| | | -8.733 | ||
|- | |- | ||
| [[11/3]] | | [[11/3]] | ||
| | | +5.290 | ||
| | | +8.916 | ||
|- | |- | ||
| [[19/14]] | | [[19/14]] | ||
| | | +5.310 | ||
| | | +8.949 | ||
|- | |- | ||
| [[5/3]] | | [[5/3]] | ||
| | | +5.636 | ||
| | | +9.499 | ||
|- | |- | ||
| [[26/11]] | | [[26/11]] | ||
| | | -5.885 | ||
| | | -9.919 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''+5.971'' | |||
| ''+10.064'' | |||
|- | |- | ||
| | | [[33/25]] | ||
| | | -5.982 | ||
| | | -10.082 | ||
|- | |- | ||
| [[27/26]] | | [[27/26]] | ||
| +6. | | -6.004 | ||
| +10. | | -10.120 | ||
|- style="background-color: #cccccc;" | |||
| ''[[33/32]]'' | |||
| ''+6.060'' | |||
| ''+10.214'' | |||
|- | |- | ||
| [[19/15]] | | [[19/15]] | ||
| | | +6.087 | ||
| | | +10.258 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[8/7]]'' | | ''[[8/7]]'' | ||
| '' | | ''+6.158'' | ||
| '' | | ''+10.378'' | ||
|- | |- | ||
| [[26/5]] | | [[26/5]] | ||
| | | -6.231 | ||
| | | -10.502 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/15]]'' | | ''[[32/15]]'' | ||
| '' | | ''-6.406'' | ||
| '' | | ''-10.796'' | ||
|- | |- | ||
| [[14/9]] | | [[14/9]] | ||
| -6. | | +6.413 | ||
| -10. | | +10.808 | ||
|- | |||
| [[33/19]] | |||
| -6.432 | |||
| -10.841 | |||
|- | |- | ||
| [[17/7]] | | [[17/7]] | ||
| | | +6.528 | ||
| | | +11.002 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/13]]'' | | ''[[24/13]]'' | ||
| '' | | ''+6.566'' | ||
| '' | | ''+11.067'' | ||
|- | |- | ||
| [[9/1]] | | [[9/1]] | ||
| | | -6.599 | ||
| | | -11.122 | ||
|- | |- | ||
| [[9/2]] | | [[9/2]] | ||
| | | +6.741 | ||
| | | +11.362 | ||
|- | |- | ||
| [[28/9]] | | [[28/9]] | ||
| | | -6.928 | ||
| | | -11.676 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/15]]'' | | ''[[16/15]]'' | ||
| '' | | ''+6.935'' | ||
| '' | | ''+11.688'' | ||
|- | |- | ||
| [[13/5]] | | [[13/5]] | ||
| | | +7.110 | ||
| | | +11.982 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/7]]'' | | ''[[16/7]]'' | ||
| '' | | ''-7.183'' | ||
| '' | | ''-12.106'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[33/16]]'' | |||
| ''-7.280'' | |||
| ''-12.270'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | | ''[[32/1]]'' | ||
| '' | | ''-7.369'' | ||
| '' | | ''-12.420'' | ||
|- | |- | ||
| [[13/11]] | | [[13/11]] | ||
| | | +7.455 | ||
| | | +12.565 | ||
|- | |- | ||
| [[21/5]] | | [[21/5]] | ||
| | | +7.518 | ||
| | | +12.671 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/29]]'' | | ''[[32/29]]'' | ||
| '' | | ''+7.576'' | ||
| '' | | ''+12.769'' | ||
|- | |- | ||
| [[10/3]] | | [[10/3]] | ||
| | | -7.704 | ||
| | | -12.985 | ||
|- | |- | ||
| [[31/26]] | | [[31/26]] | ||
| | | -7.843 | ||
| | | -13.219 | ||
|- | |- | ||
| [[21/11]] | | [[21/11]] | ||
| | | +7.864 | ||
| | | +13.253 | ||
|- | |- | ||
| [[25/3]] | | [[25/3]] | ||
| | | +7.972 | ||
| | | +13.437 | ||
|- | |- | ||
| [[19/7]] | | [[19/7]] | ||
| | | -8.031 | ||
| | | -13.535 | ||
|- | |- | ||
| [[22/3]] | | [[22/3]] | ||
| | | -8.050 | ||
| | | -13.568 | ||
|- | |- | ||
| [[31/18]] | | [[31/18]] | ||
| | | +8.202 | ||
| | | +13.824 | ||
|- | |- | ||
| [[29/9]] | | [[29/9]] | ||
| | | -8.346 | ||
| | | -14.066 | ||
|- | |- | ||
| [[19/3]] | | [[19/3]] | ||
| | | +8.423 | ||
| | | +14.196 | ||
|- | |- | ||
| [[31/3]] | | [[31/3]] | ||
| | | -8.438 | ||
| | | -14.221 | ||
|- | |- | ||
| [[25/7]] | | [[25/7]] | ||
| | | -8.481 | ||
| | | -14.294 | ||
|- | |- | ||
| [[26/25]] | | [[26/25]] | ||
| | | -8.567 | ||
| | | -14.439 | ||
|- | |- | ||
| [[11/9]] | | [[11/9]] | ||
| | | +8.590 | ||
| | | +14.478 | ||
|- | |- | ||
| [[9/5]] | | [[9/5]] | ||
| | | -8.936 | ||
| | | -15.060 | ||
|- | |- | ||
| [[26/19]] | | [[26/19]] | ||
| | | -9.018 | ||
| | | -15.199 | ||
|- | |- | ||
| [[23/18]] | | [[23/18]] | ||
| | | -9.033 | ||
| | | -15.225 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/3]]'' | | ''[[16/3]]'' | ||
| '' | | ''+9.271'' | ||
| '' | | ''+15.625'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/11]]'' | | ''[[32/11]]'' | ||
| '' | | ''-9.360'' | ||
| '' | | ''-15.775'' | ||
|- | |- | ||
| [[29/20]] | | [[29/20]] | ||
| | | +9.399 | ||
| | | +15.842 | ||
|- | |- | ||
| '''[[13/1]]''' | | '''[[13/1]]''' | ||
| ''' | | '''+9.446''' | ||
| ''' | | '''+15.920''' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[21/8]]'' | | ''[[21/8]]'' | ||
| '' | | ''-9.457'' | ||
| '' | | ''-15.940'' | ||
|- | |- | ||
| [[14/13]] | | [[14/13]] | ||
| | | -9.632 | ||
| | | -16.234 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/12]]'' | | ''[[17/12]]'' | ||
| '' | | ''-9.671'' | ||
| '' | | ''-16.299'' | ||
|- | |- | ||
| [[33/10]] | |||
| +9.695 | |||
| +16.340 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | | ''[[32/5]]'' | ||
| '' | | ''-9.705'' | ||
| '' | | ''-16.357'' | ||
|- | |- | ||
| [[27/14]] | | [[27/14]] | ||
| | | -9.712 | ||
| | | -16.369 | ||
|- | |- | ||
| [[21/17]] | | [[21/17]] | ||
| | | -9.828 | ||
| | | -16.563 | ||
|- | |- | ||
| [[21/1]] | | [[21/1]] | ||
| | | +9.854 | ||
| | | +16.609 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/8]]'' | | ''[[13/8]]'' | ||
| '' | | ''-9.866'' | ||
| '' | | ''-16.628'' | ||
|- | |- | ||
| [[27/1]] | | [[27/1]] | ||
| | | -9.899 | ||
| | | -16.684 | ||
|- | |- | ||
| [[3/2]] | | [[3/2]] | ||
| | | +10.041 | ||
| | | +16.923 | ||
|- | |- | ||
| [[28/3]] | | [[28/3]] | ||
| | | -10.227 | ||
| | | -17.237 | ||
|- | |- | ||
| [[17/13]] | | [[17/13]] | ||
| | | +10.236 | ||
| | | +17.252 | ||
|- | |- | ||
| [[22/15]] | | [[22/15]] | ||
| | | -10.386 | ||
| | | -17.505 | ||
|- | |- | ||
| [[15/13]] | | [[15/13]] | ||
| | | -10.409 | ||
| | | -17.544 | ||
|- | |- | ||
| [[33/31]] | |||
| +10.429 | |||
| +17.576 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/17]]'' | | ''[[23/17]]'' | ||
| '' | | ''+10.678'' | ||
| '' | | ''+17.997'' | ||
|- | |||
| [[33/13]] | |||
| -10.755 | |||
| -18.126 | |||
|- | |- | ||
| [[31/15]] | | [[31/15]] | ||
| | | -10.774 | ||
| | | -18.159 | ||
|- | |- | ||
| [[7/5]] | | [[7/5]] | ||
| | | +10.818 | ||
| | | +18.232 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/19]]'' | | ''[[24/19]]'' | ||
| '' | | ''+10.889'' | ||
| '' | | ''+18.352'' | ||
|- | |- | ||
| [[10/1]] | | [[10/1]] | ||
| | | -11.004 | ||
| | | -18.546 | ||
|- | |- | ||
| [[23/8]] | | [[23/8]] | ||
| | | +11.048 | ||
| | | +18.620 | ||
|- | |- | ||
| [[29/26]] | | [[29/26]] | ||
| | | -11.051 | ||
| | | -18.625 | ||
|- | |- | ||
| [[11/7]] | | [[11/7]] | ||
| | | -11.163 | ||
| | | -18.815 | ||
|- | |- | ||
| [[25/9]] | | [[25/9]] | ||
| | | +11.272 | ||
| | | +18.998 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[25/24]]'' | | ''[[25/24]]'' | ||
| '' | | ''-11.339'' | ||
| '' | | ''-19.112'' | ||
|- | |- | ||
| [[22/1]] | | [[22/1]] | ||
| | | -11.350 | ||
| | | -19.129 | ||
|- | |- | ||
| [[31/14]] | | [[31/14]] | ||
| | | -11.551 | ||
| | | -19.468 | ||
|- | |- | ||
| [[29/3]] | | [[29/3]] | ||
| | | -11.645 | ||
| | | -19.627 | ||
|- | |- | ||
| [[19/9]] | | [[19/9]] | ||
| | | +11.723 | ||
| | | +19.757 | ||
|- | |- | ||
| [[29/4]] | | [[29/4]] | ||
| | | +11.736 | ||
| | | +19.779 | ||
|- | |- | ||
| '''[[31/1]]''' | | '''[[31/1]]''' | ||
| ''' | | '''-11.738''' | ||
| ''' | | '''-19.782''' | ||
|- | |- | ||
| [[27/11]] | | [[27/11]] | ||
| | | -11.890 | ||
| | | -20.039 | ||
|- | |- | ||
| [[33/2]] | |||
| +12.031 | |||
| +20.278 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | | ''[[32/25]]'' | ||
| '' | | ''-12.042'' | ||
| '' | | ''-20.295'' | ||
|- | |||
| [[33/28]] | |||
| +12.218 | |||
| +20.592 | |||
|- | |- | ||
| [[27/5]] | | [[27/5]] | ||
| | | -12.235 | ||
| | | -20.621 | ||
|- | |- | ||
| [[23/6]] | | [[23/6]] | ||
| | | -12.333 | ||
| | | -20.786 | ||
|- | |- | ||
| [[15/2]] | | [[15/2]] | ||
| | | +12.377 | ||
| | | +20.860 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/19]]'' | | ''[[32/19]]'' | ||
| '' | | ''-12.492'' | ||
| '' | | ''-21.055'' | ||
|- | |- | ||
| [[28/15]] | | [[28/15]] | ||
| | | -12.564 | ||
| | | -21.175 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/9]]'' | | ''[[16/9]]'' | ||
| '' | | ''+12.571'' | ||
| '' | | ''+21.187'' | ||
|- | |- | ||
| [[31/20]] | | [[31/20]] | ||
| | | +12.607 | ||
| | | +21.248 | ||
|- | |- | ||
| [[13/3]] | | [[13/3]] | ||
| | | +12.746 | ||
| | | +21.481 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/4]]'' | | ''[[17/4]]'' | ||
| '' | | ''-12.970'' | ||
| '' | | ''-21.860'' | ||
|- | |- | ||
| [[11/10]] | | [[11/10]] | ||
| | | +12.995 | ||
| | | +21.901 | ||
|- | |- | ||
| '''[[7/1]]''' | | '''[[7/1]]''' | ||
| ''' | | '''+13.154''' | ||
| ''' | | '''+22.170''' | ||
|- | |- | ||
| '''[[2/1]]''' | | '''[[2/1]]''' | ||
| ''' | | '''-13.340''' | ||
| ''' | | '''-22.484''' | ||
|- | |- | ||
| [[28/1]] | | [[28/1]] | ||
| | | -13.527 | ||
| | | -22.798 | ||
|- | |- | ||
| [[33/29]] | |||
| +13.636 | |||
| +22.982 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | | ''[[24/5]]'' | ||
| '' | | ''+13.676'' | ||
| '' | | ''+23.049'' | ||
|- | |- | ||
| [[22/5]] | | [[22/5]] | ||
| | | -13.686 | ||
| | | -23.067 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/16]]'' | | ''[[17/16]]'' | ||
| '' | | ''+13.711'' | ||
| '' | | ''+23.108'' | ||
|- | |- | ||
| [[31/11]] | | [[31/11]] | ||
| | | -13.728 | ||
| | | -23.138 | ||
|- | |- | ||
| [[26/21]] | | [[26/21]] | ||
| | | -13.749 | ||
| | | -23.172 | ||
|- | |- | ||
| [[29/15]] | | [[29/15]] | ||
| | | -13.982 | ||
| | | -23.565 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/11]]'' | | ''[[24/11]]'' | ||
| '' | | ''+14.021'' | ||
| '' | | ''+23.632'' | ||
|- | |- | ||
| [[29/23]] | | [[29/23]] | ||
| | | +14.028 | ||
| | | +23.643 | ||
|- | |- | ||
| [[31/5]] | | [[31/5]] | ||
| | | -14.074 | ||
| | | -23.720 | ||
|- | |- | ||
| [[15/7]] | | [[15/7]] | ||
| | | -14.117 | ||
| | | -23.793 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[19/8]]'' | | ''[[19/8]]'' | ||
| '' | | ''-14.188'' | ||
| '' | | ''-23.913'' | ||
|- | |- | ||
| [[30/1]] | | [[30/1]] | ||
| | | -14.304 | ||
| | | -24.107 | ||
|- | |- | ||
| [[24/23]] | | [[24/23]] | ||
| | | -14.348 | ||
| | | -24.182 | ||
|- | |- | ||
| [[27/20]] | | [[27/20]] | ||
| -14. | | +14.446 | ||
| -24. | | +24.347 | ||
|- | |||
| [[33/7]] | |||
| -14.463 | |||
| -24.376 | |||
|- | |- | ||
| [[19/17]] | | [[19/17]] | ||
| | | -14.559 | ||
| | | -24.537 | ||
|- | |- | ||
| [[27/25]] | | [[27/25]] | ||
| | | -14.572 | ||
| | | -24.559 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[25/8]]'' | | ''[[25/8]]'' | ||
| '' | | ''-14.639'' | ||
| '' | | ''-24.673'' | ||
|- | |- | ||
| [[30/23]] | | [[30/23]] | ||
| | | +14.669 | ||
| | | +24.724 | ||
|- | |- | ||
| [[29/14]] | | [[29/14]] | ||
| | | -14.759 | ||
| | | -24.874 | ||
|- | |- | ||
| [[31/4]] | | [[31/4]] | ||
| | | +14.943 | ||
| | | +25.185 | ||
|- | |- | ||
| '''[[29/1]]''' | | '''[[29/1]]''' | ||
| ''' | | '''-14.945''' | ||
| ''' | | '''-25.189''' | ||
|- | |- | ||
| [[25/17]] | | [[25/17]] | ||
| | | -15.009 | ||
| | | -25.297 | ||
|- | |- | ||
| [[27/19]] | | [[27/19]] | ||
| | | -15.022 | ||
| | | -25.318 | ||
|- | |- | ||
| [[29/12]] | | [[29/12]] | ||
| | | +15.035 | ||
| | | +25.341 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[20/17]]'' | | ''[[20/17]]'' | ||
| '' | | ''+15.307'' | ||
| '' | | ''+25.798'' | ||
|- | |- | ||
| [[11/2]] | | [[11/2]] | ||
| | | +15.331 | ||
| | | +25.839 | ||
|- | |- | ||
| [[28/23]] | | [[28/23]] | ||
| | | +15.446 | ||
| | | +26.033 | ||
|- | |- | ||
| [[28/11]] | | [[28/11]] | ||
| | | -15.517 | ||
| | | -26.153 | ||
|- | |- | ||
| [[23/2]] | | [[23/2]] | ||
| | | -15.633 | ||
| | | -26.347 | ||
|- | |- | ||
| [[5/2]] | | [[5/2]] | ||
| | | +15.677 | ||
| | | +26.422 | ||
|- | |- | ||
| [[28/5]] | | [[28/5]] | ||
| | | -15.863 | ||
| | | -26.736 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[27/16]]'' | | ''[[27/16]]'' | ||
| '' | | ''-15.870'' | ||
| '' | | ''-26.748'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/1]]'' | | ''[[24/1]]'' | ||
| '' | | ''+16.012'' | ||
| '' | | ''+26.987'' | ||
|- | |- | ||
| [[25/22]] | | [[25/22]] | ||
| | | +16.022 | ||
| | | +27.004 | ||
|- | |- | ||
| [[13/9]] | | [[13/9]] | ||
| | | +16.045 | ||
| | | +27.043 | ||
|- | |- | ||
| [[19/10]] | | [[19/10]] | ||
| | | +16.127 | ||
| | | +27.181 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[12/7]]'' | | ''[[12/7]]'' | ||
| '' | | ''+16.199'' | ||
| '' | | ''+27.301'' | ||
|- | |- | ||
| [[30/11]] | | [[30/11]] | ||
| | | -16.294 | ||
| | | -27.463 | ||
|- | |- | ||
| [[31/25]] | | [[31/25]] | ||
| | | -16.410 | ||
| | | -27.658 | ||
|- | |- | ||
| [[7/3]] | | [[7/3]] | ||
| | | +16.454 | ||
| | | +27.731 | ||
|- | |- | ||
| [[22/19]] | | [[22/19]] | ||
| | | -16.473 | ||
| | | -27.764 | ||
|- | |- | ||
| [[6/1]] | | [[6/1]] | ||
| | | -16.640 | ||
| | | -28.045 | ||
|- | |- | ||
| [[27/4]] | | [[27/4]] | ||
| | | +16.782 | ||
| | | +28.284 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/13]]'' | | ''[[32/13]]'' | ||
| '' | | ''-16.815'' | ||
| '' | | ''-28.340'' | ||
|- | |- | ||
| [[31/19]] | | [[31/19]] | ||
| | | -16.861 | ||
| | | -28.417 | ||
|- | |- | ||
| [[29/11]] | | [[29/11]] | ||
| | | -16.936 | ||
| | | -28.544 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[8/5]]'' | | ''[[8/5]]'' | ||
| '' | | ''+16.975'' | ||
| '' | | ''+28.610'' | ||
|- | |- | ||
| [[26/7]] | | [[26/7]] | ||
| | | -17.048 | ||
| | | -28.734 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/7]]'' | | ''[[23/7]]'' | ||
| '' | | ''+17.206'' | ||
| '' | | ''+28.999'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/21]]'' | | ''[[32/21]]'' | ||
| '' | | ''-17.223'' | ||
| '' | | ''-29.028'' | ||
|- | |- | ||
| [[31/23]] | | [[31/23]] | ||
| | | +17.236 | ||
| | | +29.049 | ||
|- | |- | ||
| [[29/5]] | | [[29/5]] | ||
| | | -17.281 | ||
| | | -29.126 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[11/8]]'' | | ''[[11/8]]'' | ||
| '' | | ''-17.321'' | ||
| '' | | ''-29.193'' | ||
|- | |- | ||
| [[17/5]] | | [[17/5]] | ||
| | | +17.346 | ||
| | | +29.234 | ||
|- | |- | ||
| [[23/22]] | | [[23/22]] | ||
| | | -17.623 | ||
| | | -29.703 | ||
|- | |- | ||
| [[17/11]] | | [[17/11]] | ||
| | | +17.691 | ||
| | | +29.817 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[31/16]]'' | | ''[[31/16]]'' | ||
| '' | | ''-17.709'' | ||
| '' | | ''-29.847'' | ||
|- | |- | ||
| [[20/9]] | | [[20/9]] | ||
| | | -17.745 | ||
| | | -29.908 | ||
|- | |- | ||
| [[23/10]] | | [[23/10]] | ||
| | | -17.969 | ||
| | | -30.285 | ||
|- | |- | ||
| [[25/2]] | | [[25/2]] | ||
| | | +18.013 | ||
| | | +30.359 | ||
|- | |- | ||
| [[28/25]] | | [[28/25]] | ||
| | | -18.200 | ||
| | | -30.674 | ||
|- | |- | ||
| [[31/12]] | | [[31/12]] | ||
| | | +18.243 | ||
| | | +30.747 | ||
|- | |- | ||
| [[19/2]] | | [[19/2]] | ||
| | | +18.464 | ||
| | | +31.119 | ||
|- | |- | ||
| [[11/6]] | | [[11/6]] | ||
| | | +18.631 | ||
| | | +31.400 | ||
|- | |- | ||
| [[28/19]] | | [[28/19]] | ||
| | | -18.650 | ||
| | | -31.433 | ||
|- | |- | ||
| [[6/5]] | | [[6/5]] | ||
| | | -18.976 | ||
| | | -31.983 | ||
|- | |- | ||
| [[27/23]] | | [[27/23]] | ||
| | | +19.074 | ||
| | | +32.148 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[8/1]]'' | | ''[[8/1]]'' | ||
| '' | | ''+19.312'' | ||
| '' | | ''+32.548'' | ||
|- | |- | ||
| [[27/13]] | | [[27/13]] | ||
| | | -19.345 | ||
| | | -32.604 | ||
|- | |- | ||
| [[30/19]] | | [[30/19]] | ||
| | | -19.427 | ||
| | | -32.742 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[7/4]]'' | | ''[[7/4]]'' | ||
| '' | | ''-19.498'' | ||
| '' | | ''-32.862'' | ||
|- | |- | ||
| [[29/25]] | | [[29/25]] | ||
| | | -19.618 | ||
| | | -33.064 | ||
|- | |- | ||
| '''[[17/1]]''' | | '''[[17/1]]''' | ||
| ''' | | '''+19.682''' | ||
| ''' | | '''+33.172''' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[18/17]]'' | | ''[[18/17]]'' | ||
| '' | | ''+19.711'' | ||
| '' | | ''+33.222'' | ||
|- | |- | ||
| [[9/7]] | | [[9/7]] | ||
| | | -19.753 | ||
| | | -33.292 | ||
|- | |- | ||
| [[17/14]] | | [[17/14]] | ||
| | | +19.868 | ||
| | | +33.486 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/12]]'' | | ''[[13/12]]'' | ||
| '' | | ''-19.907'' | ||
| '' | | ''-33.551'' | ||
|- | |- | ||
| [[18/1]] | | [[18/1]] | ||
| | | -19.940 | ||
| | | -33.606 | ||
|- | |- | ||
| [[29/19]] | | [[29/19]] | ||
| | | -20.068 | ||
| | | -33.823 | ||
|- | |- | ||
| [[9/4]] | | [[9/4]] | ||
| | | +20.082 | ||
| | | +33.845 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[15/8]]'' | | ''[[15/8]]'' | ||
| '' | | ''-20.275'' | ||
| '' | | ''-34.172'' | ||
|- | |- | ||
| [[13/10]] | | [[13/10]] | ||
| | | +20.450 | ||
| | | +34.466 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/21]]'' | | ''[[23/21]]'' | ||
| '' | | ''+20.506'' | ||
| '' | | ''+34.560'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/7]]'' | | ''[[32/7]]'' | ||
| '' | | ''-20.523'' | ||
| '' | | ''-34.589'' | ||
|- style="background-color: #cccccc;" | |||
| ''[[33/8]]'' | |||
| ''-20.621'' | |||
| ''-34.754'' | |||
|- | |- | ||
| [[17/15]] | | [[17/15]] | ||
| | | +20.645 | ||
| | | +34.796 | ||
|- | |- | ||
| [[22/13]] | | [[22/13]] | ||
| | | -20.796 | ||
| | | -35.049 | ||
|- | |- | ||
| [[21/10]] | | [[21/10]] | ||
| | | +20.858 | ||
| | | +35.155 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/13]]'' | | ''[[23/13]]'' | ||
| ''-20. | | ''+20.914'' | ||
| ''-35. | | ''+35.249'' | ||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''-20.917'' | |||
| ''-35.253'' | |||
|- | |- | ||
| | | [[33/17]] | ||
| | | -20.991 | ||
| | | -35.378 | ||
|- | |- | ||
| [[20/3]] | | [[20/3]] | ||
| | | -21.045 | ||
| | | -35.469 | ||
|- | |- | ||
| [[31/13]] | | [[31/13]] | ||
| | | -21.183 | ||
| | | -35.703 | ||
|- | |- | ||
| [[22/21]] | | [[22/21]] | ||
| | | -21.204 | ||
| | | -35.737 | ||
|- | |- | ||
| [[25/6]] | | [[25/6]] | ||
| | | +21.313 | ||
| | | +35.921 | ||
|- | |- | ||
| [[31/21]] | | [[31/21]] | ||
| | | -21.592 | ||
| | | -36.391 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/23]]'' | | ''[[32/23]]'' | ||
| '' | | ''+21.604'' | ||
| '' | | ''+36.412'' | ||
|- | |- | ||
| [[19/6]] | | [[19/6]] | ||
| | | +21.763 | ||
| | | +36.680 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[20/7]]'' | | ''[[20/7]]'' | ||
| '' | | ''+21.835'' | ||
| '' | | ''+36.800'' | ||
|- | |- | ||
| [[18/11]] | | [[18/11]] | ||
| | | -21.930 | ||
| | | -36.961 | ||
|- | |- | ||
| [[18/5]] | | [[18/5]] | ||
| | | -22.276 | ||
| | | -37.544 | ||
|- | |- | ||
| [[23/9]] | | [[23/9]] | ||
| | | -22.374 | ||
| | | -37.709 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[8/3]]'' | | ''[[8/3]]'' | ||
| '' | | ''+22.611'' | ||
| '' | | ''+38.109'' | ||
|- | |- | ||
| [[13/2]] | | [[13/2]] | ||
| | | +22.786 | ||
| | | +38.404 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[21/4]]'' | | ''[[21/4]]'' | ||
| '' | | ''-22.798'' | ||
| '' | | ''-38.424'' | ||
|- | |- | ||
| [[28/13]] | | [[28/13]] | ||
| | | -22.973 | ||
| | | -38.718 | ||
|- | |- | ||
| [[17/3]] | | [[17/3]] | ||
| | | +22.982 | ||
| -38. | | +38.733 | ||
|- style="background-color: #cccccc;" | |||
| ''[[17/6]]'' | |||
| ''-23.011'' | |||
| ''-38.783'' | |||
|- | |- | ||
| | | [[33/20]] | ||
| | | +23.035 | ||
| | | +38.824 | ||
|- | |- | ||
| [[27/7]] | | [[27/7]] | ||
| | | -23.053 | ||
| | | -38.853 | ||
|- | |- | ||
| [[21/2]] | | [[21/2]] | ||
| | | +23.195 | ||
| | | +39.093 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/4]]'' | | ''[[13/4]]'' | ||
| '' | | ''-23.206'' | ||
| '' | | ''-39.112'' | ||
|- | |- | ||
| [[4/3]] | | [[4/3]] | ||
| | | -23.381 | ||
| | | -39.407 | ||
|- | |- | ||
| [[26/17]] | | [[26/17]] | ||
| | | -23.576 | ||
| | | -39.736 | ||
|- | |- | ||
| [[30/13]] | | [[30/13]] | ||
| | | -23.750 | ||
| | | -40.028 | ||
|- | |- | ||
| [[10/7]] | | [[10/7]] | ||
| | | -24.158 | ||
| | | -40.716 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[19/12]]'' | | ''[[19/12]]'' | ||
| '' | | ''-24.229'' | ||
| '' | | ''-40.836'' | ||
|- | |- | ||
| [[20/1]] | | [[20/1]] | ||
| | | -24.344 | ||
| | | -41.030 | ||
|- | |- | ||
| [[23/16]] | | [[23/16]] | ||
| | | +24.388 | ||
| | | +41.104 | ||
|- | |- | ||
| [[29/13]] | | [[29/13]] | ||
| | | -24.391 | ||
| | | -41.109 | ||
|- | |- | ||
| [[22/7]] | | [[22/7]] | ||
| | | -24.504 | ||
| | | -41.299 | ||
|- | |- | ||
| [[25/18]] | | [[25/18]] | ||
| | | +24.612 | ||
| | | +41.482 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[25/12]]'' | | ''[[25/12]]'' | ||
| '' | | ''-24.680'' | ||
| '' | | ''-41.595'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[29/17]]'' | | ''[[29/17]]'' | ||
| '' | | ''+24.706'' | ||
| '' | | ''+41.639'' | ||
|- | |- | ||
| [[29/21]] | | [[29/21]] | ||
| | | -24.799 | ||
| | | -41.797 | ||
|- | |- | ||
| [[31/7]] | | [[31/7]] | ||
| | | -24.891 | ||
| | | -41.952 | ||
|- | |- | ||
| [[19/18]] | | [[19/18]] | ||
| | | +25.063 | ||
| | | +42.241 | ||
|- | |- | ||
| [[29/8]] | | [[29/8]] | ||
| | | +25.076 | ||
| | | +42.263 | ||
|- | |- | ||
| [[26/23]] | | [[26/23]] | ||
| | | +25.079 | ||
| | | +42.268 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[21/20]]'' | | ''[[21/20]]'' | ||
| '' | | ''-25.134'' | ||
| '' | | ''-42.361'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/19]]'' | | ''[[23/19]]'' | ||
| '' | | ''+25.237'' | ||
| '' | | ''+42.534'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[30/17]]'' | | ''[[30/17]]'' | ||
| '' | | ''+25.347'' | ||
| '' | | ''+42.721'' | ||
|- | |- | ||
| [[33/4]] | |||
| +25.372 | |||
| +42.762 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | | ''[[20/13]]'' | ||
| '' | | ''+25.543'' | ||
| '' | | ''+43.050'' | ||
|- | |- | ||
| [[23/3]] | | [[23/3]] | ||
| | | -25.673 | ||
| | | -43.270 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[25/23]]'' | | ''[[25/23]]'' | ||
| '' | | ''-25.687'' | ||
| '' | | ''-43.293'' | ||
|- | |- | ||
| [[15/4]] | | [[15/4]] | ||
| | | +25.718 | ||
| | | +43.344 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[9/8]]'' | | ''[[9/8]]'' | ||
| '' | | ''-25.911'' | ||
| '' | | ''-43.671'' | ||
|- | |- | ||
| [[13/6]] | | [[13/6]] | ||
| | | +26.086 | ||
| | | +43.965 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[28/17]]'' | | ''[[28/17]]'' | ||
| '' | | ''+26.124'' | ||
| '' | | ''+44.030'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[18/7]]'' | | ''[[18/7]]'' | ||
| '' | | ''+26.239'' | ||
| '' | | ''+44.224'' | ||
|- | |- | ||
| [[17/9]] | | [[17/9]] | ||
| | | +26.281 | ||
| | | +44.294 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/2]]'' | | ''[[17/2]]'' | ||
| '' | | ''-26.311'' | ||
| '' | | ''-44.344'' | ||
|- | |- | ||
| [[20/11]] | | [[20/11]] | ||
| | | -26.335 | ||
| | | -44.385 | ||
|- | |- | ||
| [[7/2]] | | [[7/2]] | ||
| | | +26.494 | ||
| | | +44.654 | ||
|- | |- | ||
| [[4/1]] | | [[4/1]] | ||
| | | -26.681 | ||
| | | -44.968 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[12/5]]'' | | ''[[12/5]]'' | ||
| '' | | ''+27.016'' | ||
| '' | | ''+45.533'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/17]]'' | | ''[[32/17]]'' | ||
| '' | | ''-27.051'' | ||
| '' | | ''-45.592'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[12/11]]'' | | ''[[12/11]]'' | ||
| '' | | ''+27.362'' | ||
| '' | | ''+46.116'' | ||
|- | |- | ||
| [[30/7]] | | [[30/7]] | ||
| | | -27.458 | ||
| | | -46.277 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[19/4]]'' | | ''[[19/4]]'' | ||
| '' | | ''-27.529'' | ||
| '' | | ''-46.397'' | ||
|- | |- | ||
| [[33/23]] | |||
| +27.664 | |||
| +46.625 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | | ''[[31/24]]'' | ||
| '' | | ''-27.750'' | ||
| '' | | ''-46.769'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[31/17]]'' | | ''[[31/17]]'' | ||
| '' | | ''+27.913'' | ||
| '' | | ''+47.045'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[25/4]]'' | | ''[[25/4]]'' | ||
| '' | | ''-27.979'' | ||
| '' | | ''-47.157'' | ||
|- | |- | ||
| [[23/15]] | | [[23/15]] | ||
| | | -28.010 | ||
| | | -47.208 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/5]]'' | | ''[[23/5]]'' | ||
| '' | | ''+28.023'' | ||
| '' | | ''+47.231'' | ||
|- | |- | ||
| [[29/7]] | | [[29/7]] | ||
| | | -28.099 | ||
| | | -47.358 | ||
|- | |- | ||
| [[31/8]] | | [[31/8]] | ||
| | | +28.284 | ||
| | | +47.669 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[22/17]]'' | | ''[[22/17]]'' | ||
| '' | | ''+28.301'' | ||
| '' | | ''+47.699'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[23/11]]'' | | ''[[23/11]]'' | ||
| '' | | ''+28.369'' | ||
| '' | | ''+47.813'' | ||
|- | |- | ||
| [[29/24]] | | [[29/24]] | ||
| | | +28.376 | ||
| | | +47.824 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/10]]'' | | ''[[17/10]]'' | ||
| '' | | ''-28.647'' | ||
| '' | | ''-48.282'' | ||
|- | |- | ||
| [[11/4]] | | [[11/4]] | ||
| | | +28.671 | ||
| | | +48.323 | ||
|- | |- | ||
| [[23/14]] | | [[23/14]] | ||
| | | -28.787 | ||
| | | -48.517 | ||
|- | |- | ||
| '''[[23/1]]''' | | '''[[23/1]]''' | ||
| ''' | | '''-28.973''' | ||
| ''' | | '''-48.831''' | ||
|- | |- | ||
| [[5/4]] | | [[5/4]] | ||
| | | +29.017 | ||
| | | +48.906 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[27/8]]'' | | ''[[27/8]]'' | ||
| '' | | ''-29.211'' | ||
| '' | | ''-49.232'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[12/1]]'' | | ''[[12/1]]'' | ||
| '' | | ''+29.353'' | ||
| '' | | ''+49.471'' | ||
|- | |- | ||
| [[18/13]] | | [[18/13]] | ||
| | | -29.386 | ||
| | | -49.526 | ||
|- | |- | ||
| [[20/19]] | | [[20/19]] | ||
| | | -29.468 | ||
| | | -49.665 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[7/6]]'' | | ''[[7/6]]'' | ||
| '' | | ''-29.539'' | ||
| '' | | ''-49.785'' | ||
|- | |- | ||
| [[27/17]] | | [[27/17]] | ||
| | | -29.581 | ||
| | | -49.856 | ||
|} | |} | ||
= | {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | ||
|+ style="white-space: nowrap;" | 33-integer-limit intervals in 71zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[14/1]] | |||
| -0.186 | |||
| -0.314 | |||
|- | |||
| [[11/5]] | |||
| -0.346 | |||
| -0.583 | |||
|- | |- | ||
| [[31/22]] | |||
| -0.388 | |||
| -0.654 | |||
|- | |- | ||
| [[21/13]] | |||
| +0.408 | |||
| +0.688 | |||
|- | |- | ||
|[[ | | [[25/19]] | ||
| | | -0.451 | ||
| | | -0.759 | ||
| | |- | ||
| [[ | | [[26/3]] | ||
| | | -0.595 | ||
| | | -1.003 | ||
| | |- | ||
| | | [[30/29]] | ||
|[[ | | +0.641 | ||
| | | +1.081 | ||
|- | |||
| [[31/10]] | |||
| -0.733 | |||
| -1.236 | |||
|- | |||
| [[15/14]] | |||
| -0.777 | |||
| -1.309 | |||
|- | |- | ||
|[[ | | [[15/1]] | ||
| | | -0.963 | ||
| | | -1.623 | ||
|- | |- | ||
| [[ | | [[23/12]] | ||
| | | +1.007 | ||
| | | +1.698 | ||
| | |- | ||
|[[ | | [[27/10]] | ||
| | | +1.105 | ||
| | | +1.863 | ||
|- | |- | ||
| | | [[33/14]] | ||
| -1.123 | |||
| -1.892 | |||
| | |||
|- | |- | ||
| [[33/1]] | |||
| -1.309 | |||
| -2.206 | |||
|- | |- | ||
| | | [[29/28]] | ||
| | | -1.418 | ||
| | | -2.390 | ||
|- | |- | ||
| | | [[27/22]] | ||
| +1.451 | |||
| +2.445 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/2]] | ||
| +1.603 | |||
| +2.702 | |||
| | |||
| | |||
|- | |- | ||
| | | [[29/2]] | ||
| -1.605 | |||
| -2.705 | |||
| | |||
| | |||
|- | |- | ||
| | | [[29/6]] | ||
| +1.695 | |||
| +2.857 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/28]] | ||
| +1.789 | |||
| +3.016 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/27]] | ||
| -1.839 | |||
| -3.099 | |||
| | |||
| | |||
|- | |- | ||
| | | '''[[11/1]]''' | ||
| '''+1.991''' | |||
| '''+3.355''' | |||
|- | |- | ||
| | | [[14/11]] | ||
| -2.177 | |||
| -3.669 | |||
| | |||
| | |||
|- | |- | ||
| | | [[23/4]] | ||
| -2.292 | |||
| -3.864 | |||
| | |||
| | |||
|- | |- | ||
| | | '''[[5/1]]''' | ||
| '''+2.336''' | |||
| '''+3.938''' | |||
| | |||
|- | |- | ||
| | | [[14/5]] | ||
| -2.523 | |||
| -4.252 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/30]] | ||
| +2.566 | |||
| +4.325 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/26]] | ||
| +2.586 | |||
| +4.358 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/11]] | ||
| +2.682 | |||
| +4.520 | |||
| | |||
| | |||
|- | |- | ||
| | | [[26/9]] | ||
| +2.705 | |||
| +4.559 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/5]] | ||
| +2.787 | |||
| +4.697 | |||
| | |- | ||
| | | [[26/15]] | ||
| -2.931 | |||
| -4.940 | |||
|- | |- | ||
| | | [[15/11]] | ||
| -2.954 | |||
| -4.979 | |||
| | |||
| | |||
|- | |- | ||
| | | [[14/3]] | ||
| +3.113 | |||
| +5.247 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/11]] | ||
| +3.133 | |||
| +5.280 | |||
| | |||
| | |||
|- | |- | ||
| [[31/29]] | |||
| +3.208 | |||
| [[ | | +5.406 | ||
| | |||
| | |||
|- | |- | ||
| | | '''[[3/1]]''' | ||
| '''-3.300''' | |||
| '''-5.561''' | |||
| | |||
| | |||
|- | |- | ||
| | | [[27/2]] | ||
| | | +3.442 | ||
| | | +5.800 | ||
| | |- | ||
| | | [[29/22]] | ||
| -3.595 | |||
| -6.060 | |||
|- | |- | ||
| | | [[28/27]] | ||
| -3.628 | |||
| -6.115 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/5]] | ||
| -3.645 | |||
| -6.144 | |||
| | |||
| | |||
|- | |- | ||
| | | [[13/7]] | ||
| -3.708 | |||
| -6.250 | |||
| | |||
| | |||
|- | |- | ||
| | | [[26/1]] | ||
| -3.894 | |||
| -6.564 | |||
| | |||
| | |||
|- | |- | ||
| | | [[29/10]] | ||
| -3.941 | |||
| -6.642 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/13]] | ||
| -4.323 | |||
| -7.285 | |||
| | |||
| | |||
|- | |- | ||
| | | [[10/9]] | ||
| | | -4.405 | ||
| | | -7.424 | ||
| | |- | ||
| | | [[23/20]] | ||
| -4.629 | |||
| -7.801 | |||
|- | |- | ||
| | | [[25/1]] | ||
| +4.673 | |||
| +7.875 | |||
| | |||
| | |||
|- | |- | ||
| | | [[21/19]] | ||
| +4.731 | |||
| +7.974 | |||
| | |||
| | |||
|- | |- | ||
| | | [[22/9]] | ||
| -4.750 | |||
| -8.006 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/13]] | ||
| -4.773 | |||
| -8.045 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/14]] | ||
| +4.859 | |||
| +8.190 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/6]] | ||
| | | +4.903 | ||
| | | +8.263 | ||
| | |- | ||
| | | [[29/18]] | ||
| +4.995 | |||
| +8.418 | |||
|- | |- | ||
| | | [[29/27]] | ||
| -5.046 | |||
| -8.505 | |||
| | |||
| | |||
|- | |- | ||
| | | '''[[19/1]]''' | ||
| '''+5.123''' | |||
| '''+8.635''' | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/9]] | ||
| -5.138 | |||
| -8.660 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/21]] | ||
| -5.182 | |||
| -8.733 | |||
| | |||
| | |||
|- | |- | ||
| | | [[11/3]] | ||
| +5.290 | |||
| +8.916 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/14]] | ||
| | | +5.310 | ||
| +8.949 | |||
| | |||
|- | |- | ||
| | | [[5/3]] | ||
| +5.636 | |||
| +9.499 | |||
| | |||
| | |||
|- | |- | ||
| | | [[26/11]] | ||
| -5.885 | |||
| -9.919 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/25]] | ||
| -5.982 | |||
| -10.082 | |||
| | |||
| | |||
|- | |- | ||
| | | [[27/26]] | ||
| -6.004 | |||
| -10.120 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/15]] | ||
| +6.087 | |||
| +10.258 | |||
| | |||
| | |||
|- | |- | ||
| | | [[26/5]] | ||
| -6.231 | |||
| -10.502 | |||
| | |||
| | |||
|- | |- | ||
| | | [[14/9]] | ||
| +6.413 | |||
| +10.808 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/19]] | ||
| -6.432 | |||
| -10.841 | |||
| | |||
| | |||
|- | |- | ||
| | | [[17/7]] | ||
| +6.528 | |||
| +11.002 | |||
| | |||
| | |||
|- | |- | ||
| | | [[9/1]] | ||
| -6.599 | |||
| -11.122 | |||
| | |||
| | |||
|- | |- | ||
| | | [[9/2]] | ||
| +6.741 | |||
| +11.362 | |||
| | |||
| | |||
|- | |- | ||
| | | [[28/9]] | ||
| -6.928 | |||
| -11.676 | |||
| | |||
| | |||
|- | |- | ||
| | | [[13/5]] | ||
| | | +7.110 | ||
| | | +11.982 | ||
| | |- | ||
| | | [[13/11]] | ||
| +7.455 | |||
| +12.565 | |||
|- | |- | ||
| | | [[21/5]] | ||
| +7.518 | |||
| +12.671 | |||
| | |||
| | |||
|- | |- | ||
| [[10/3]] | |||
| -7.704 | |||
| [[ | | -12.985 | ||
| | |||
| | |||
|- | |- | ||
| | | [[31/26]] | ||
| -7.843 | |||
| -13.219 | |||
| | |||
| | |||
|- | |- | ||
| | | [[21/11]] | ||
| +7.864 | |||
| +13.253 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/3]] | ||
| +7.972 | |||
| +13.437 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/7]] | ||
| | | -8.031 | ||
| [[ | | -13.535 | ||
| | |- | ||
| | | [[22/3]] | ||
| -8.050 | |||
| -13.568 | |||
|- | |- | ||
| | | [[31/18]] | ||
| +8.202 | |||
| +13.824 | |||
| | |||
| | |||
|- | |- | ||
| | | [[29/9]] | ||
| -8.346 | |||
| -14.066 | |||
| | |||
| | |||
|- | |- | ||
| | | [[19/3]] | ||
| +8.423 | |||
| +14.196 | |||
| | |||
| | |||
|- | |- | ||
| [[31/3]] | |||
| -8.438 | |||
| [[ | | -14.221 | ||
| | |||
| | |||
|- | |- | ||
| [[25/7]] | |||
| -8.481 | |||
| [[ | | -14.294 | ||
| | |||
| | |||
|- | |- | ||
| | | [[26/25]] | ||
| | | -8.567 | ||
| [[ | | -14.439 | ||
| | |- | ||
| | | [[11/9]] | ||
| +8.590 | |||
| +14.478 | |||
|- | |- | ||
| | | [[9/5]] | ||
| -8.936 | |||
| -15.060 | |||
| | |||
| | |||
|- | |- | ||
| [[26/19]] | |||
| -9.018 | |||
| [[ | | -15.199 | ||
| | |||
| | |||
|- | |- | ||
| | | [[23/18]] | ||
| -9.033 | |||
| -15.225 | |||
| | |||
| | |||
|- | |- | ||
| | | [[29/20]] | ||
| +9.399 | |||
| +15.842 | |||
| | |||
| | |||
|- | |- | ||
| | | '''[[13/1]]''' | ||
| '''+9.446''' | |||
| '''+15.920''' | |||
| | |||
| | |||
|- | |- | ||
| | | [[14/13]] | ||
| | | -9.632 | ||
| | | -16.234 | ||
| | |- | ||
| | | [[33/10]] | ||
| +9.695 | |||
| +16.340 | |||
|- | |- | ||
| | | [[27/14]] | ||
| -9.712 | |||
| -16.369 | |||
| | |||
| | |||
|- | |- | ||
| [[21/17]] | |||
| -9.828 | |||
| [[ | | -16.563 | ||
| | |||
| | |||
|- | |- | ||
| | | [[21/1]] | ||
| +9.854 | |||
| +16.609 | |||
| | |||
| | |||
|- | |- | ||
| | | [[27/1]] | ||
| -9.899 | |||
| -16.684 | |||
| | |||
| | |||
|- | |- | ||
| | | [[3/2]] | ||
| +10.041 | |||
| +16.923 | |||
| | |||
| | |||
|- | |- | ||
| | | [[28/3]] | ||
| | | -10.227 | ||
| | | -17.237 | ||
| | |- | ||
| | | [[17/13]] | ||
| +10.236 | |||
| +17.252 | |||
|- | |- | ||
| | | [[22/15]] | ||
| -10.386 | |||
| -17.505 | |||
| | |||
| | |||
|- | |- | ||
| | | [[15/13]] | ||
| -10.409 | |||
| -17.544 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/31]] | ||
| +10.429 | |||
| +17.576 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/13]] | ||
| | | -10.755 | ||
| | | -18.126 | ||
|- | |- | ||
| [[31/15]] | |||
| -10.774 | |||
| [[ | | -18.159 | ||
| | |||
| | |||
|- | |- | ||
| | | [[7/5]] | ||
| | | +10.818 | ||
| | | +18.232 | ||
| | |- | ||
| | | [[10/1]] | ||
| -11.004 | |||
| -18.546 | |||
|- | |- | ||
| | | [[23/8]] | ||
| | | +11.048 | ||
| +18.620 | |||
| | |||
|- | |- | ||
| | | [[29/26]] | ||
| -11.051 | |||
| -18.625 | |||
| | |||
| | |||
|- | |- | ||
| | | [[11/7]] | ||
| | | -11.163 | ||
| | | -18.815 | ||
|- | |- | ||
| | | [[25/9]] | ||
| +11.272 | |||
| +18.998 | |||
| | |||
| | |||
|- | |- | ||
| | | [[22/1]] | ||
| -11.350 | |||
| -19.129 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/14]] | ||
| | | -11.551 | ||
| | | -19.468 | ||
| | |- | ||
| | | [[29/3]] | ||
| -11.645 | |||
| -19.627 | |||
|- | |||
| [[19/9]] | |||
| +11.723 | |||
| +19.757 | |||
|- | |- | ||
| | | [[29/4]] | ||
| | | +11.736 | ||
| +19.779 | |||
| | |||
|- | |- | ||
| | | '''[[31/1]]''' | ||
| '''-11.738''' | |||
| '''-19.782''' | |||
| | |||
| | |||
|- | |- | ||
| [[27/11]] | |||
| -11.890 | |||
| [[ | | -20.039 | ||
| | |||
| | |||
|- | |- | ||
| | | [[33/2]] | ||
| +12.031 | |||
| +20.278 | |||
| | |||
| | |||
|- | |- | ||
| | | [[33/28]] | ||
| +12.218 | |||
| +20.592 | |||
| | |||
| | |||
|- | |- | ||
| | | [[27/5]] | ||
| | | -12.235 | ||
| | | -20.621 | ||
| | |- | ||
| | | [[23/6]] | ||
| -12.333 | |||
| -20.786 | |||
|- | |||
| [[15/2]] | |||
| +12.377 | |||
| +20.860 | |||
|- | |- | ||
| | | [[28/15]] | ||
| -12.564 | |||
| -21.175 | |||
| | |||
| | |||
|- | |- | ||
| | | [[31/20]] | ||
| +12.607 | |||
| +21.248 | |||
| | |||
| | |||
|- | |- | ||
| | | [[13/3]] | ||
| +12.746 | |||
| +21.481 | |||
| | |||
| | |||
|- | |- | ||
| | | [[11/10]] | ||
| +12.995 | |||
| +21.901 | |||
| | |||
| | |||
|- | |- | ||
| | | '''[[7/1]]''' | ||
| '''+13.154''' | |||
| '''+22.170''' | |||
| | |||
|+ | |||
|- | |- | ||
| '''[[2/1]]''' | |||
| '''-13.340''' | |||
| '''-22.484''' | |||
|- | |- | ||
| | | [[28/1]] | ||
| | | -13.527 | ||
| | | -22.798 | ||
|- | |- | ||
| | | [[33/29]] | ||
| | | +13.636 | ||
| | | +22.982 | ||
|- | |- | ||
| [[ | | [[22/5]] | ||
| - | | -13.686 | ||
| - | | -23.067 | ||
|- | |- | ||
| [[ | | [[31/11]] | ||
| - | | -13.728 | ||
| - | | -23.138 | ||
|- | |- | ||
| [[21 | | [[26/21]] | ||
| | | -13.749 | ||
| | | -23.172 | ||
|- | |- | ||
| | | [[29/15]] | ||
| | | -13.982 | ||
| | | -23.565 | ||
|- | |- | ||
| [[ | | [[29/23]] | ||
| | | +14.028 | ||
| | | +23.643 | ||
|- | |- | ||
| | | [[31/5]] | ||
| | | -14.074 | ||
| | | -23.720 | ||
|- | |- | ||
| [[ | | [[15/7]] | ||
| | | -14.117 | ||
| | | -23.793 | ||
|- | |- | ||
| [[ | | [[30/1]] | ||
| - | | -14.304 | ||
| - | | -24.107 | ||
|- | |- | ||
| [[ | | [[24/23]] | ||
| | | -14.348 | ||
| | | -24.182 | ||
|- | |- | ||
| [[ | | [[27/20]] | ||
| + | | +14.446 | ||
| + | | +24.347 | ||
|- | |- | ||
| | | [[33/7]] | ||
| | | -14.463 | ||
| | | -24.376 | ||
|- | |- | ||
| | | [[19/17]] | ||
| | | -14.559 | ||
| | | -24.537 | ||
|- | |- | ||
| [[ | | [[27/25]] | ||
| | | -14.572 | ||
| | | -24.559 | ||
|- | |- | ||
| [[ | | [[30/23]] | ||
| | | +14.669 | ||
| | | +24.724 | ||
|- | |- | ||
| [[ | | [[29/14]] | ||
| | | -14.759 | ||
| | | -24.874 | ||
|- | |- | ||
| [[ | | [[31/4]] | ||
| + | | +14.943 | ||
| + | | +25.185 | ||
|- | |- | ||
| ''[[ | | '''[[29/1]]''' | ||
| '' | | '''-14.945''' | ||
| '' | | '''-25.189''' | ||
|- | |- | ||
| [[25/ | | [[25/17]] | ||
| - | | -15.009 | ||
| - | | -25.297 | ||
|- | |- | ||
| [[27/ | | [[27/19]] | ||
| | | -15.022 | ||
| | | -25.318 | ||
|- | |- | ||
| [[29/ | | [[29/12]] | ||
| + | | +15.035 | ||
| + | | +25.341 | ||
|- | |- | ||
| | | [[11/2]] | ||
| | | +15.331 | ||
| | | +25.839 | ||
|- | |- | ||
| [[ | | [[28/23]] | ||
| | | +15.446 | ||
| | | +26.033 | ||
|- | |- | ||
| [[11 | | [[28/11]] | ||
| | | -15.517 | ||
| | | -26.153 | ||
|- | |- | ||
| [[ | | [[23/2]] | ||
| - | | -15.633 | ||
| - | | -26.347 | ||
|- | |- | ||
| [[ | | [[5/2]] | ||
| + | | +15.677 | ||
| + | | +26.422 | ||
|- | |- | ||
| | | [[28/5]] | ||
| | | -15.863 | ||
| | | -26.736 | ||
|- | |- | ||
| [[ | | [[25/22]] | ||
| | | +16.022 | ||
| | | +27.004 | ||
|- | |- | ||
| | | [[13/9]] | ||
| | | +16.045 | ||
| | | +27.043 | ||
|- | |- | ||
| | | [[19/10]] | ||
| | | +16.127 | ||
| | | +27.181 | ||
|- | |- | ||
| [[ | | [[30/11]] | ||
| - | | -16.294 | ||
| - | | -27.463 | ||
|- | |- | ||
| [[ | | [[31/25]] | ||
| | | -16.410 | ||
| | | -27.658 | ||
|- | |- | ||
| [[ | | [[7/3]] | ||
| + | | +16.454 | ||
| + | | +27.731 | ||
|- | |- | ||
| [[ | | [[22/19]] | ||
| - | | -16.473 | ||
| - | | -27.764 | ||
|- | |- | ||
| | | [[6/1]] | ||
| | | -16.640 | ||
| | | -28.045 | ||
|- | |- | ||
| [[ | | [[27/4]] | ||
| | | +16.782 | ||
| | | +28.284 | ||
|- | |- | ||
| | | [[31/19]] | ||
| | | -16.861 | ||
| | | -28.417 | ||
|- | |- | ||
| [[ | | [[29/11]] | ||
| | | -16.936 | ||
| | | -28.544 | ||
|- | |- | ||
| | | [[26/7]] | ||
| | | -17.048 | ||
| | | -28.734 | ||
|- | |- | ||
| [[ | | [[31/23]] | ||
| + | | +17.236 | ||
| + | | +29.049 | ||
|- | |- | ||
| [[ | | [[29/5]] | ||
| | | -17.281 | ||
| | | -29.126 | ||
|- | |- | ||
| [[ | | [[17/5]] | ||
| | | +17.346 | ||
| | | +29.234 | ||
|- | |- | ||
| | | [[23/22]] | ||
| | | -17.623 | ||
| | | -29.703 | ||
|- | |- | ||
| [[ | | [[17/11]] | ||
| + | | +17.691 | ||
| + | | +29.817 | ||
|- | |- | ||
| [[9 | | [[20/9]] | ||
| - | | -17.745 | ||
| - | | -29.908 | ||
|- | |- | ||
| [[ | | [[23/10]] | ||
| | | -17.969 | ||
| | | -30.285 | ||
|- | |- | ||
| [[ | | [[25/2]] | ||
| | | +18.013 | ||
| | | +30.359 | ||
|- | |- | ||
| [[25 | | [[28/25]] | ||
| - | | -18.200 | ||
| - | | -30.674 | ||
|- | |- | ||
| | | [[31/12]] | ||
| | | +18.243 | ||
| | | +30.747 | ||
|- | |- | ||
| | | [[19/2]] | ||
| | | +18.464 | ||
| | | +31.119 | ||
|- | |- | ||
| [[ | | [[11/6]] | ||
| | | +18.631 | ||
| | | +31.400 | ||
|- | |- | ||
| [[ | | [[28/19]] | ||
| | | -18.650 | ||
| | | -31.433 | ||
|- | |- | ||
| [[ | | [[6/5]] | ||
| | | -18.976 | ||
| | | -31.983 | ||
|- | |- | ||
| [[ | | [[27/23]] | ||
| | | +19.074 | ||
| | | +32.148 | ||
|- | |- | ||
| [[ | | [[27/13]] | ||
| | | -19.345 | ||
| | | -32.604 | ||
|- | |- | ||
| [[ | | [[30/19]] | ||
| - | | -19.427 | ||
| - | | -32.742 | ||
|- | |- | ||
| [[ | | [[29/25]] | ||
| - | | -19.618 | ||
| - | | -33.064 | ||
|- | |- | ||
| '''[[ | | '''[[17/1]]''' | ||
| ''' | | '''+19.682''' | ||
| ''' | | '''+33.172''' | ||
|- | |- | ||
| [[ | | [[9/7]] | ||
| | | -19.753 | ||
| | | -33.292 | ||
|- | |- | ||
| | | [[17/14]] | ||
| | | +19.868 | ||
| | | +33.486 | ||
|- | |- | ||
| [[ | | [[18/1]] | ||
| - | | -19.940 | ||
| - | | -33.606 | ||
|- | |- | ||
| [[ | | [[29/19]] | ||
| - | | -20.068 | ||
| - | | -33.823 | ||
|- | |- | ||
| [[ | | [[9/4]] | ||
| + | | +20.082 | ||
| + | | +33.845 | ||
|- | |- | ||
| [[ | | [[13/10]] | ||
| + | | +20.450 | ||
| + | | +34.466 | ||
|- | |- | ||
| [[ | | [[17/15]] | ||
| | | +20.645 | ||
| | | +34.796 | ||
|- | |- | ||
| [[ | | [[22/13]] | ||
| | | -20.796 | ||
| | | -35.049 | ||
|- | |- | ||
| | | [[21/10]] | ||
| | | +20.858 | ||
| | | +35.155 | ||
|- | |- | ||
| [[ | | [[33/17]] | ||
| - | | -20.991 | ||
| - | | -35.378 | ||
|- | |- | ||
| | | [[20/3]] | ||
| | | -21.045 | ||
| | | -35.469 | ||
|- | |- | ||
| | | [[31/13]] | ||
| | | -21.183 | ||
| | | -35.703 | ||
|- | |- | ||
| [[ | | [[22/21]] | ||
| | | -21.204 | ||
| | | -35.737 | ||
|- | |- | ||
| [[ | | [[25/6]] | ||
| | | +21.313 | ||
| | | +35.921 | ||
|- | |- | ||
| [[ | | [[31/21]] | ||
| - | | -21.592 | ||
| - | | -36.391 | ||
|- | |- | ||
| [[ | | [[19/6]] | ||
| + | | +21.763 | ||
| + | | +36.680 | ||
|- | |- | ||
| [[ | | [[18/11]] | ||
| | | -21.930 | ||
| | | -36.961 | ||
|- | |- | ||
| | | [[18/5]] | ||
| | | -22.276 | ||
| | | -37.544 | ||
|- | |- | ||
| [[ | | [[23/9]] | ||
| | | -22.374 | ||
| | | -37.709 | ||
|- | |- | ||
| [[ | | [[13/2]] | ||
| + | | +22.786 | ||
| + | | +38.404 | ||
|- | |- | ||
| | | [[28/13]] | ||
| | | -22.973 | ||
| | | -38.718 | ||
|- | |- | ||
| [[ | | [[17/3]] | ||
| + | | +22.982 | ||
| + | | +38.733 | ||
|- | |- | ||
| [[ | | [[33/20]] | ||
| + | | +23.035 | ||
| + | | +38.824 | ||
|- | |- | ||
| [[ | | [[27/7]] | ||
| - | | -23.053 | ||
| - | | -38.853 | ||
|- | |- | ||
| | | [[21/2]] | ||
| | | +23.195 | ||
| | | +39.093 | ||
|- | |- | ||
| [[ | | [[4/3]] | ||
| - | | -23.381 | ||
| - | | -39.407 | ||
|- | |- | ||
| [[ | | [[26/17]] | ||
| - | | -23.576 | ||
| - | | -39.736 | ||
|- | |- | ||
| [[ | | [[30/13]] | ||
| | | -23.750 | ||
| | | -40.028 | ||
|- | |- | ||
| | | [[10/7]] | ||
| | | -24.158 | ||
| | | -40.716 | ||
|- | |- | ||
| [[ | | [[20/1]] | ||
| | | -24.344 | ||
| | | -41.030 | ||
|- | |- | ||
| | | [[23/16]] | ||
| | | +24.388 | ||
| | | +41.104 | ||
|- | |- | ||
| [[29/ | | [[29/13]] | ||
| - | | -24.391 | ||
| - | | -41.109 | ||
|- | |- | ||
| [[ | | [[22/7]] | ||
| | | -24.504 | ||
| | | -41.299 | ||
|- | |- | ||
| [[ | | [[25/18]] | ||
| | | +24.612 | ||
| | | +41.482 | ||
|- | |- | ||
| | | [[29/21]] | ||
| | | -24.799 | ||
| | | -41.797 | ||
|- | |- | ||
| [[ | | [[31/7]] | ||
| | | -24.891 | ||
| | | -41.952 | ||
|- | |- | ||
| | | [[19/18]] | ||
| | | +25.063 | ||
| | | +42.241 | ||
|- | |- | ||
| [[29/ | | [[29/8]] | ||
| | | +25.076 | ||
| | | +42.263 | ||
|- | |- | ||
| [[ | | [[26/23]] | ||
| | | +25.079 | ||
| | | +42.268 | ||
|- | |- | ||
| [[ | | [[33/4]] | ||
| + | | +25.372 | ||
| + | | +42.762 | ||
|- | |- | ||
| | | [[23/3]] | ||
| | | -25.673 | ||
| | | -43.270 | ||
|- | |- | ||
| [[ | | [[15/4]] | ||
| + | | +25.718 | ||
| + | | +43.344 | ||
|- | |- | ||
| [[ | | [[13/6]] | ||
| | | +26.086 | ||
| | | +43.965 | ||
|- | |- | ||
| [[ | | [[17/9]] | ||
| | | +26.281 | ||
| | | +44.294 | ||
|- | |- | ||
| | | [[20/11]] | ||
| | | -26.335 | ||
| | | -44.385 | ||
|- | |- | ||
| [[ | | [[7/2]] | ||
| + | | +26.494 | ||
| + | | +44.654 | ||
|- | |- | ||
| | | [[4/1]] | ||
| | | -26.681 | ||
| | | -44.968 | ||
|- | |- | ||
| [[ | | [[30/7]] | ||
| - | | -27.458 | ||
| - | | -46.277 | ||
|- | |- | ||
| [[ | | [[33/23]] | ||
| + | | +27.664 | ||
| + | | +46.625 | ||
|- | |- | ||
| [[ | | [[23/15]] | ||
| | | -28.010 | ||
| | | -47.208 | ||
|- | |- | ||
| [[ | | [[29/7]] | ||
| | | -28.099 | ||
| | | -47.358 | ||
|- | |- | ||
| [[ | | [[31/8]] | ||
| + | | +28.284 | ||
| + | | +47.669 | ||
|- | |- | ||
| [[ | | [[29/24]] | ||
| + | | +28.376 | ||
| + | | +47.824 | ||
|- | |- | ||
| [[ | | [[11/4]] | ||
| | | +28.671 | ||
| | | +48.323 | ||
|- | |- | ||
| [[23/ | | [[23/14]] | ||
| - | | -28.787 | ||
| - | | -48.517 | ||
|- | |- | ||
| [[ | | '''[[23/1]]''' | ||
| - | | '''-28.973''' | ||
| - | | '''-48.831''' | ||
|- | |- | ||
| [[ | | [[5/4]] | ||
| + | | +29.017 | ||
| + | | +48.906 | ||
|- | |- | ||
| | | [[18/13]] | ||
| | | -29.386 | ||
| | | -49.526 | ||
|- | |- | ||
| | | [[20/19]] | ||
| -29.468 | |||
| -49.665 | |||
| - | |||
|- | |||
|- | |- | ||
| [[27/17]] | |||
| -29.581 | |||
| -49.856 | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/6]]'' | |||
| ''+29.794'' | |||
| ''+50.215'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''-29.980'' | |||
| ''-50.529'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/8]]'' | |||
| ''+30.122'' | |||
| ''+50.768'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/10]]'' | |||
| ''+30.686'' | |||
| ''+51.718'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/11]]'' | |||
| ''-30.964'' | |||
| ''-52.187'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/17]]'' | |||
| ''-31.032'' | |||
| ''-52.301'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/5]]'' | |||
| ''-31.309'' | |||
| ''-52.769'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''+31.354'' | |||
| ''+52.843'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/17]]'' | |||
| ''-31.419'' | |||
| ''-52.955'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''+31.583'' | |||
| ''+53.231'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+31.804'' | |||
| ''+53.603'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''-31.971'' | |||
| ''-53.884'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''-32.317'' | |||
| ''-54.467'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/2]]'' | |||
| ''+33.022'' | |||
| ''+55.656'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''-33.094'' | |||
| ''-55.776'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''-33.209'' | |||
| ''-55.970'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''+33.422'' | |||
| ''+56.329'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/23]]'' | |||
| ''+33.646'' | |||
| ''+56.707'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-33.790'' | |||
| ''-56.950'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/17]]'' | |||
| ''-33.986'' | |||
| ''-57.279'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/19]]'' | |||
| ''-34.096'' | |||
| ''-57.466'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+34.199'' | |||
| ''+57.639'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/17]]'' | |||
| ''-34.627'' | |||
| ''-58.361'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/12]]'' | |||
| ''+34.653'' | |||
| ''+58.405'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+35.104'' | |||
| ''+59.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+36.127'' | |||
| ''+60.888'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/6]]'' | |||
| ''+36.322'' | |||
| ''+61.217'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+36.535'' | |||
| ''+61.576'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''-36.722'' | |||
| ''-61.891'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-37.498'' | |||
| ''-63.200'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''-37.729'' | |||
| ''-63.588'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''+38.416'' | |||
| ''+64.747'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/13]]'' | |||
| ''-38.419'' | |||
| ''-64.751'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/8]]'' | |||
| ''+38.712'' | |||
| ''+65.246'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/21]]'' | |||
| ''-38.827'' | |||
| ''-65.440'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''+39.058'' | |||
| ''+65.828'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''+39.426'' | |||
| ''+66.449'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''-39.622'' | |||
| ''-66.778'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+39.835'' | |||
| ''+67.138'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-40.021'' | |||
| ''-67.452'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''+41.624'' | |||
| ''+70.153'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+42.012'' | |||
| ''+70.807'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/7]]'' | |||
| ''-42.127'' | |||
| ''-71.001'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-42.358'' | |||
| ''-71.390'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''-43.134'' | |||
| ''-72.699'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''-43.321'' | |||
| ''-73.013'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''+43.463'' | |||
| ''+73.252'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-44.026'' | |||
| ''-74.202'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+44.694'' | |||
| ''+75.327'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+45.144'' | |||
| ''+76.087'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-45.311'' | |||
| ''-76.368'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-45.657'' | |||
| ''-76.951'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''+46.363'' | |||
| ''+78.140'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-46.762'' | |||
| ''-78.813'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | | ''[[25/24]]'' | ||
| ''+ | | ''+47.994'' | ||
| ''+19. | | ''+80.888'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[ | | ''[[24/19]]'' | ||
| ''- | | ''-48.444'' | ||
| ''- | | ''-81.648'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[23/17]]'' | ||
| + | | ''-48.655'' | ||
| + | | ''-82.003'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[13/8]]'' | ||
| - | | ''+49.467'' | ||
| - | | ''+83.372'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[17/12]]'' | ||
| + | | ''+49.662'' | ||
| + | | ''+83.701'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[21/8]]'' | ||
| | | ''+49.876'' | ||
| | | ''+84.060'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[11/ | | ''[[16/3]]'' | ||
| - | | ''-50.062'' | ||
| - | | ''-84.375'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/25]]'' | | ''[[32/29]]'' | ||
| ''+ | | ''-51.757'' | ||
| ''+ | | ''-87.231'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[24/ | | ''[[33/16]]'' | ||
| ''- | | ''+52.053'' | ||
| ''-21. | | ''+87.730'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[16/15]]'' | ||
| + | | ''-52.398'' | ||
| + | | ''-88.312'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[24/13]]'' | ||
| - | | ''-52.767'' | ||
| - | | ''-88.933'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[8/7]]'' | ||
| | | ''-53.175'' | ||
| | | ''-89.622'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[16/1]]'' | |||
| ''-53.362'' | |||
| ''-89.936'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''-54.964'' | |||
| ''-92.637'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-55.352'' | |||
| ''-93.291'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-55.698'' | |||
| ''-93.873'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''-56.475'' | |||
| ''-95.183'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''-56.803'' | |||
| ''-95.736'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+58.034'' | |||
| ''+97.811'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+58.485'' | |||
| ''+98.571'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+59.703'' | |||
| ''+100.624'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''-60.103'' | |||
| ''-101.297'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-62.807'' | |||
| ''-105.856'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-63.003'' | |||
| ''-106.185'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+63.216'' | |||
| ''+106.544'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-63.402'' | |||
| ''-106.858'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/32]]'' | |||
| ''+65.393'' | |||
| ''+110.214'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-65.739'' | |||
| ''-110.796'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-66.516'' | |||
| ''-112.106'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''-66.702'' | |||
| ''-112.420'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''-68.693'' | |||
| ''-115.775'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | | ''[[32/5]]'' | ||
| '' | | ''-69.038'' | ||
| '' | | ''-116.357'' | ||
|- | |- style="background-color: #cccccc;" | ||
| [[ | | ''[[32/25]]'' | ||
| - | | ''-71.375'' | ||
| - | | ''-120.295'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[32/19]]'' | | ''[[32/19]]'' | ||
| '' | | ''-71.825'' | ||
| '' | | ''-121.055'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[17/16]]'' | | ''[[17/16]]'' | ||
| ''-13. | | ''+73.044'' | ||
| ''- | | ''+123.108'' | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''-76.148'' | |||
| ''-128.340'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-76.556'' | |||
| ''-129.028'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''-79.856'' | |||
| ''-134.589'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''-86.384'' | |||
| ''-145.592'' | |||
|} | |||
== Record on the Riemann zeta function with prime 2 removed == | |||
'''[[71zpi]]''' sets a height record on the Riemann zeta function with prime 2 removed. The previous record is [[53zpi]] and the next one is [[93zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime number 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function. | |||
{| class="wikitable" | |||
! colspan="6" |Unmodified Riemann zeta function | |||
! colspan="5" |Riemann zeta function with prime 2 removed | |||
|- | |- | ||
| | ! colspan="3" | Tuning | ||
| | ! colspan="1" |Strength | ||
| | ! colspan="2" |Closest EDO | ||
! colspan="2" |Tuning | |||
! colspan="1" |Strength | |||
! colspan="2" |Closest EDO | |||
|- | |- | ||
| | !ZPI | ||
!Steps per octave | |||
!Step size (cents) | |||
! colspan="1" | Height | |||
!EDO | |||
!Octave (cents) | |||
!Steps per octave | |||
!Step size (cents) | |||
! colspan="1" |Height | |||
!EDO | |||
!Octave (cents) | |||
|- | |- | ||
| [[ | |[[53zpi]] | ||
| | | 16.3979501311478 | ||
| | |73.1798786069366 | ||
|2.518818 | |||
| [[16edo]] | |||
|1170.87805771099 | |||
| 16.4044889390925 | |||
|73.1507092025500 | |||
|4.100909 | |||
|[[16edo]] | |||
|1170.41134724080 | |||
|- | |- | ||
| [[ | |[[71zpi]] | ||
| | |20.2248393119540 | ||
| | |59.3329806724710 | ||
| | | 3.531097 | ||
| [[ | |[[20edo]] | ||
| | |1186.65961344942 | ||
| | |20.2459529213541 | ||
| | |59.2711049295348 | ||
| [[ | |4.137236 | ||
| | |[[20edo]] | ||
|1185.42209859070 | |||
|- | |- | ||
| | | [[93zpi]] | ||
| | | 24.5782550666850 | ||
| | |48.8236449961234 | ||
|2.810487 | |||
|[[25edo]] | |||
|1220.59112490308 | |||
|24.5738316304204 | |||
|48.8324335434323 | |||
|4.665720 | |||
|[[25edo]] | |||
|1220.81083858581 | |||
|} | |||
=== Harmonic series in 71zpi with prime 2 removed === | |||
{{Harmonics in cet|59.2711049295348|columns=15|title=Approximation of harmonics in 71zpi with prime 2 removed }} | |||
{{Harmonics in cet|59.2711049295348|columns=18|start=16|title=Approximation of harmonics in 71zpi with prime 2 removed }} | |||
=== Intervals in 71zpi with prime 2 removed === | |||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | |||
|+ style="white-space:nowrap" | Intervals in 71zpi with prime 2 removed | |||
|- | |- | ||
| [[ | | colspan="3" style="text-align:left;" | JI ratios are comprised of 34-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | ||
| | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
| | * '''Bold:''' relative error < 16.667 % | ||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| colspan="2" style="text-align:right;" | <center>'''⟨81 128] at every 4 steps'''</center><br>[[9/8|Whole tone]] = 13 steps<br>[[256/243|Limma]] = 8 steps<br>[[2187/2048|Apotome]] = 5 steps | |||
|- | |- | ||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and Downs Notation | |||
! Step | |||
|- | |- | ||
| | | 0 | ||
| | | 0.000 | ||
| | | | ||
| P1 | |||
| 0 | |||
|- | |- | ||
| '''[[ | | 1 | ||
| 59.271 | |||
| '''[[34/33]]''', '''[[33/32]]''', '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small> | |||
| vA1, ^d2 | |||
| 4 | |||
|- | |- | ||
| [[27/25]] | | 2 | ||
| | | 118.542 | ||
| | | <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], [[33/31]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small> | ||
| m2 | |||
| 8 | |||
|- | |- | ||
| [[19/17]] | | 3 | ||
| | | 177.813 | ||
| | | <small><small><small>[[12/11]]</small></small></small>, <small><small>[[23/21]]</small></small>, <small>[[34/31]]</small>, [[11/10]], '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, '''<u>[[10/9]]'''</u>, [[29/26]], [[19/17]], <small>[[28/25]]</small>, <small><small><small>[[9/8]]</small></small></small> | ||
| vM2 | |||
| 12 | |||
|- | |- | ||
| ''[[ | | 4 | ||
| 237.084 | |||
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[33/29]], '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small><small>[[29/25]]</small></small> | |||
| vvA2 | |||
| 16 | |||
|- | |- | ||
| [[7/ | | 5 | ||
| | | 296.356 | ||
| | | <small><small><small>[[7/6]]</small></small></small>, <small><small>[[34/29]]</small></small>, <small>[[27/23]]</small>, <small>[[20/17]]</small>, [[33/28]], '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small> | ||
| vm3 | |||
| 20 | |||
|- | |- | ||
| [[19/ | | 6 | ||
| | | 355.627 | ||
| | | <small><small><small>[[29/24]]</small></small></small>, <small><small><small>[[23/19]]</small></small></small>, <small>[[17/14]]</small>, <small>[[28/23]]</small>, '''[[11/9]]''', '''<u>[[27/22]]'''</u>, '''<u>[[16/13]]'''</u>, [[21/17]], [[26/21]], <small>[[31/25]]</small> | ||
| vvM3 | |||
| 24 | |||
|- | |- | ||
| ''[[ | | 7 | ||
| 414.898 | |||
| <small><small><small>[[5/4]]</small></small></small>, <small>[[34/27]]</small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[33/26]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small><small>[[9/7]]</small></small>, <small><small><small>[[31/24]]</small></small></small> | |||
| ^^M3 | |||
| 28 | |||
|- | |- | ||
| [[23/ | | 8 | ||
| | | 474.169 | ||
| | | <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], '''[[17/13]]''', '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, '''[[33/25]]''', <small><small>[[4/3]]</small></small> | ||
| vv4 | |||
| 32 | |||
|- | |- | ||
| ''[[ | | 9 | ||
| 533.440 | |||
| <small>[[31/23]]</small>, [[27/20]], [[23/17]], '''<u>[[19/14]]'''</u>, '''<u>[[34/25]]'''</u>, '''<u>[[15/11]]'''</u>, '''[[26/19]]''', <small>[[11/8]]</small>, <small><small><small>[[29/21]]</small></small></small> | |||
| ^^4 | |||
| 36 | |||
|- | |- | ||
| [[17/ | | 10 | ||
| | | 592.711 | ||
| | | <small><small><small>[[18/13]]</small></small></small>, <small><small>[[25/18]]</small></small>, <small><small>[[32/23]]</small></small>, [[7/5]], '''<u>[[31/22]]'''</u>, '''<u>[[24/17]]'''</u>, [[17/12]], <small>[[27/19]]</small>, <small><small><small>[[10/7]]</small></small></small> | ||
| ^A4 | |||
| 40 | |||
|- | |- | ||
| [[ | | 11 | ||
| | | 651.982 | ||
| | | <small><small><small>[[33/23]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''[[19/13]]''', [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small>, <small><small><small>[[34/23]]</small></small></small> | ||
| ^^d5 | |||
| 44 | |||
|- | |- | ||
| [[29/15]] | | 12 | ||
| | | 711.253 | ||
| | | '''[[3/2]]''', <small>[[32/21]]</small>, <small><small>[[29/19]]</small></small>, <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small> | ||
| ^5 | |||
| 48 | |||
|- | |- | ||
| ''[[ | | 13 | ||
| 770.524 | |||
| <small><small><small>[[20/13]]</small></small></small>, <small>[[17/11]]</small>, [[31/20]], '''[[14/9]]''', '''<u>[[25/16]]'''</u>, [[11/7]], <small><small>[[30/19]]</small></small>, <small><small><small>[[19/12]]</small></small></small> | |||
| ^^d6 | |||
| 52 | |||
|- | |- | ||
| [[27/5]] | | 14 | ||
| | | 829.795 | ||
| | | <small><small><small>[[27/17]]</small></small></small>, <small>[[8/5]]</small>, '''<u>[[29/18]]'''</u>, '''<u>[[21/13]]'''</u>, '''<u>[[34/21]]'''</u>, [[13/8]], <small>[[31/19]]</small>, <small><small>[[18/11]]</small></small> | ||
| ^m6 | |||
| 56 | |||
|- | |- | ||
| [[13/ | | 15 | ||
| | | 889.067 | ||
| | | <small><small><small>[[23/14]]</small></small></small>, <small><small><small>[[28/17]]</small></small></small>, <small><small>[[33/20]]</small></small>, '''<u>[[5/3]]'''</u>, [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small> | ||
| M6 | |||
| 60 | |||
|- | |- | ||
| [[15/7]] | | 16 | ||
| | | 948.338 | ||
| | | <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, '''[[33/19]]''', <small><small>[[7/4]]</small></small> | ||
| vA6, ^d7 | |||
| 64 | |||
|- | |- | ||
| ''[[ | | 17 | ||
| 1007.609 | |||
| <small><small>[[30/17]]</small></small>, <small><small>[[23/13]]</small></small>, [[16/9]], '''<u>[[25/14]]'''</u>, '''<u>[[34/19]]'''</u>, [[9/5]], <small><small>[[29/16]]</small></small>, <small><small><small>[[20/11]]</small></small></small> | |||
| m7 | |||
| 68 | |||
|- | |- | ||
| ''[[ | | 18 | ||
| 1066.880 | |||
| <small><small><small>[[31/17]]</small></small></small>, <small>[[11/6]]</small>, '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[28/15]], <small><small>[[15/8]]</small></small>, <small><small><small>[[32/17]]</small></small></small> | |||
| vM7 | |||
| 72 | |||
|- | |- | ||
| [[31/ | | 19 | ||
| | | 1126.151 | ||
| | | <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''[[25/13]]''', [[27/14]], <small>[[29/15]]</small>, <small>[[31/16]]</small>, <small><small>[[33/17]]</small></small> | ||
| vvA7 | |||
| 76 | |||
|- | |- | ||
| [[ | | 20 | ||
| + | | 1185.422 | ||
| | | [[2/1]] | ||
| v1 +1 oct | |||
| 80 | |||
|- | |- | ||
| [[25/ | | 21 | ||
| + | | 1244.693 | ||
| | | '''[[33/16]]''', [[31/15]], <small>[[29/14]]</small>, <small><small>[[27/13]]</small></small>, <small><small><small>[[25/12]]</small></small></small> | ||
| vvA1 +1 oct | |||
| 84 | |||
|- | |- | ||
| [[ | | 22 | ||
| + | | 1303.964 | ||
| | | <small><small><small>[[23/11]]</small></small></small>, <small>[[21/10]]</small>, [[19/9]], '''<u>[[17/8]]'''</u>, '''[[32/15]]''', <small>[[15/7]]</small>, <small><small>[[28/13]]</small></small> | ||
| vm2 +1 oct | |||
| 88 | |||
|- | |- | ||
| ''[[ | | 23 | ||
| | | 1363.235 | ||
| | | <small><small>[[13/6]]</small></small>, [[24/11]], '''<u>[[11/5]]'''</u>, [[31/14]], <small>[[20/9]]</small>, <small><small><small>[[29/13]]</small></small></small> | ||
| vvM2 +1 oct | |||
| 92 | |||
|- | |- | ||
| [[25/ | | 24 | ||
| | | 1422.507 | ||
| | | <small>[[9/4]]</small>, '''[[34/15]]''', '''<u>[[25/11]]'''</u>, '''[[16/7]]''', <small>[[23/10]]</small>, <small><small><small>[[30/13]]</small></small></small> | ||
| ^^M2 +1 oct | |||
| 96 | |||
|- | |- | ||
| [[ | | 25 | ||
| + | | 1481.778 | ||
| | | <small>[[7/3]]</small>, '''<u>[[33/14]]'''</u>, '''[[26/11]]''', <small>[[19/8]]</small>, <small><small>[[31/13]]</small></small> | ||
| vvm3 +1 oct | |||
| 100 | |||
|- | |- | ||
| [[29/ | | 26 | ||
| + | | 1541.049 | ||
| | | <small><small><small>[[12/5]]</small></small></small>, [[29/12]], '''<u>[[17/7]]'''</u>, '''[[22/9]]''', [[27/11]], <small>[[32/13]]</small> | ||
| ^^m3 +1 oct | |||
| 104 | |||
|- | |- | ||
| | | 27 | ||
| | | 1600.320 | ||
| | | [[5/2]], [[33/13]], <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small> | ||
| ^M3 +1 oct | |||
| 108 | |||
|- | |- | ||
| [[ | | 28 | ||
| + | | 1659.591 | ||
| | | <small><small>[[18/7]]</small></small>, <small>[[31/12]]</small>, '''[[13/5]]''', '''<u>[[34/13]]'''</u>, [[21/8]], <small>[[29/11]]</small> | ||
| ^^d4 +1 oct | |||
| 112 | |||
|- | |- | ||
| [[ | | 29 | ||
| | | 1718.862 | ||
| | | <small><small>[[8/3]]</small></small>, '''<u>[[27/10]]'''</u>, '''[[19/7]]''', <small>[[30/11]]</small> | ||
| ^4 +1 oct | |||
| 116 | |||
|- | |- | ||
| ''[[ | | 30 | ||
| 1778.133 | |||
| <small><small><small>[[11/4]]</small></small></small>, '''[[25/9]]''', '''<u>[[14/5]]'''</u>, <small>[[31/11]]</small>, <small><small><small>[[17/6]]</small></small></small> | |||
| A4 +1 oct | |||
| 120 | |||
|- | |- | ||
| ''[[ | | 31 | ||
| 1837.404 | |||
| <small><small>[[20/7]]</small></small>, '''[[23/8]]''', '''<u>[[26/9]]'''</u>, '''[[29/10]]''', [[32/11]] | |||
| ^d5 +1 oct | |||
| 124 | |||
|- | |- | ||
| [[ | | 32 | ||
| + | | 1896.675 | ||
| | | '''[[3/1]]''' | ||
| P5 +1 oct | |||
| 128 | |||
|- | |- | ||
| [[31/25]] | | 33 | ||
| + | | 1955.946 | ||
| | | '''<u>[[34/11]]'''</u>, '''<u>[[31/10]]'''</u>, '''[[28/9]]''', <small>[[25/8]]</small>, <small><small><small>[[22/7]]</small></small></small> | ||
| vA5 +1 oct, ^d6 +1 oct | |||
| 132 | |||
|- | |- | ||
| ''[[ | | 34 | ||
| | | 2015.218 | ||
| | | <small>[[19/6]]</small>, '''<u>[[16/5]]'''</u>, [[29/9]], <small><small><small>[[13/4]]</small></small></small> | ||
| m6 +1 oct | |||
| 136 | |||
|- | |- | ||
| [[ | | 35 | ||
| | | 2074.489 | ||
| | | <small>[[23/7]]</small>, '''[[33/10]]''', '''[[10/3]]''' | ||
| vM6 +1 oct | |||
| 140 | |||
|- | |- | ||
| [[ | | 36 | ||
| + | | 2133.760 | ||
| | | <small><small><small>[[27/8]]</small></small></small>, <small>[[17/5]]</small>, '''<u>[[24/7]]'''</u>, '''[[31/9]]''' | ||
| vvA6 +1 oct | |||
| 144 | |||
|- | |- | ||
| [[ | | 37 | ||
| + | | 2193.031 | ||
| | | <small><small>[[7/2]]</small></small>, '''<u>[[32/9]]'''</u>, [[25/7]], <small><small>[[18/5]]</small></small> | ||
| vm7 +1 oct | |||
| 148 | |||
|- | |- | ||
| [[ | | 38 | ||
| + | | 2252.302 | ||
| | | <small><small>[[29/8]]</small></small>, '''<u>[[11/3]]'''</u>, <small>[[26/7]]</small> | ||
| vvM7 +1 oct | |||
| 152 | |||
|- | |- | ||
| [[ | | 39 | ||
| | | 2311.573 | ||
| | | <small><small>[[15/4]]</small></small>, [[34/9]], '''<u>[[19/5]]'''</u>, [[23/6]], <small><small><small>[[27/7]]</small></small></small> | ||
| ^^M7 +1 oct | |||
| 156 | |||
|- | |- | ||
| | | 40 | ||
| | | 2370.844 | ||
| | | <small><small><small>[[31/8]]</small></small></small>, <small><small><small>[[4/1]]</small></small></small> | ||
| vv1 +2 oct | |||
| 160 | |||
|- | |- | ||
| [[ | | 41 | ||
| + | | 2430.115 | ||
| | | <small><small>[[33/8]]</small></small> | ||
| ^^1 +2 oct | |||
| 164 | |||
|- | |- | ||
| ''[[ | | 42 | ||
| | | 2489.386 | ||
| | | <small><small><small>[[29/7]]</small></small></small>, <small>[[25/6]]</small>, '''<u>[[21/5]]'''</u>, <small>[[17/4]]</small> | ||
| vvm2 +2 oct | |||
| 168 | |||
|- | |- | ||
| | | 43 | ||
| | | 2548.658 | ||
| | | <small><small><small>[[30/7]]</small></small></small>, [[13/3]], <small>[[22/5]]</small>, <small><small><small>[[31/7]]</small></small></small> | ||
| ^^m2 +2 oct | |||
| 172 | |||
|- | |- | ||
| ''[[ | | 44 | ||
| | | 2607.929 | ||
| | | '''<u>[[9/2]]'''</u>, <small><small>[[32/7]]</small></small> | ||
| ^M2 +2 oct | |||
| 176 | |||
|- | |- | ||
| [[ | | 45 | ||
| + | | 2667.200 | ||
| | | <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, <small>[[33/7]]</small> | ||
| ^^d3 +2 oct | |||
| 180 | |||
|- | |- | ||
| [[ | | 46 | ||
| + | | 2726.471 | ||
| | | <small><small><small>[[19/4]]</small></small></small>, [[24/5]], '''<u>[[29/6]]'''</u>, '''[[34/7]]''' | ||
| ^m3 +2 oct | |||
| 184 | |||
|- | |- | ||
| ''[[ | | 47 | ||
| | | 2785.742 | ||
| | | '''<u>[[5/1]]'''</u> | ||
| M3 +2 oct | |||
| 188 | |||
|- | |- | ||
| [[ | | 48 | ||
| | | 2845.013 | ||
| | | '''<u>[[31/6]]'''</u>, '''[[26/5]]''', <small><small><small>[[21/4]]</small></small></small> | ||
| vA3 +2 oct, ^d4 +2 oct | |||
| 192 | |||
|- | |- | ||
| [[ | | 49 | ||
| + | | 2904.284 | ||
| | | '''[[16/3]]''', <small>[[27/5]]</small> | ||
| P4 +2 oct | |||
| 196 | |||
|- | |- | ||
| [[ | | 50 | ||
| | | 2963.555 | ||
| | | [[11/2]], <small>[[28/5]]</small> | ||
| vA4 +2 oct | |||
| 200 | |||
|- | |- | ||
| ''[[ | | 51 | ||
| | | 3022.826 | ||
| | | <small><small>[[17/3]]</small></small>, '''[[23/4]]''', <small><small>[[29/5]]</small></small> | ||
| d5 +2 oct | |||
| 204 | |||
|- | |- | ||
| | | 52 | ||
| | | 3082.097 | ||
| <small><small>[[6/1]]</small></small> | |||
| v5 +2 oct | |||
| [[ | | 208 | ||
| | |||
| | |||
|- | |- | ||
| [[ | | 53 | ||
| + | | 3141.369 | ||
| | | <small>[[31/5]]</small> | ||
| vvA5 +2 oct | |||
| 212 | |||
|- | |- | ||
| [[ | | 54 | ||
| + | | 3200.640 | ||
| | | <small><small><small>[[25/4]]</small></small></small>, '''[[19/3]]''', [[32/5]] | ||
| vm6 +2 oct | |||
| 216 | |||
|- | |- | ||
| [[ | | 55 | ||
| + | | 3259.911 | ||
| | | <small>[[13/2]]</small>, '''[[33/5]]''', <small><small>[[20/3]]</small></small> | ||
| vvM6 +2 oct | |||
| 220 | |||
|- | |- | ||
| [[ | | 56 | ||
| + | | 3319.182 | ||
| | | [[27/4]], '''<u>[[34/5]]'''</u> | ||
| ^^M6 +2 oct | |||
| 224 | |||
|- | |- | ||
| [[ | | 57 | ||
| | | 3378.453 | ||
| | | '''[[7/1]]''' | ||
| vvm7 +2 oct | |||
| 228 | |||
|- | |- | ||
| [[ | | 58 | ||
| + | | 3437.724 | ||
| | | '''[[29/4]]''', [[22/3]] | ||
| ^^m7 +2 oct | |||
| 232 | |||
|- | |- | ||
| ''[[ | | 59 | ||
| | | 3496.995 | ||
| | | '''[[15/2]]''', <small><small><small>[[23/3]]</small></small></small> | ||
| ^M7 +2 oct | |||
| 236 | |||
|- | |- | ||
| [[ | | 60 | ||
| | | 3556.266 | ||
| | | [[31/4]] | ||
| ^^d1 +3 oct | |||
| 240 | |||
|- | |- | ||
| [[ | | 61 | ||
| | | 3615.537 | ||
| | | <small>[[8/1]]</small> | ||
| ^1 +3 oct | |||
| 244 | |||
|- | |- | ||
| [[ | | 62 | ||
| + | | 3674.809 | ||
| | | <small><small>[[33/4]]</small></small>, '''<u>[[25/3]]'''</u> | ||
| ^^d2 +3 oct | |||
| 248 | |||
|- | |- | ||
| ''[[ | | 63 | ||
| | | 3734.080 | ||
| | | <small><small><small>[[17/2]]</small></small></small>, '''<u>[[26/3]]'''</u> | ||
| ^m2 +3 oct | |||
| 252 | |||
|- | |- | ||
| [[ | | 64 | ||
| | | 3793.351 | ||
| | | [[9/1]] | ||
| M2 +3 oct | |||
| 256 | |||
|- | |- | ||
| [[ | | 65 | ||
| | | 3852.622 | ||
| | | [[28/3]] | ||
| vA2 +3 oct, ^d3 +3 oct | |||
| 260 | |||
|- | |- | ||
| [[ | | 66 | ||
| + | | 3911.893 | ||
| | | [[19/2]], <small>[[29/3]]</small> | ||
| m3 +3 oct | |||
| 264 | |||
|- | |- | ||
| [[ | | 67 | ||
| | | 3971.164 | ||
| | | <small>[[10/1]]</small> | ||
| vM3 +3 oct | |||
| 268 | |||
|- | |- | ||
| [[ | | 68 | ||
| + | | 4030.435 | ||
| | | [[31/3]] | ||
| vvA3 +3 oct | |||
| 272 | |||
|- | |- | ||
| ''[[ | | 69 | ||
| | | 4089.706 | ||
| | | <small>[[21/2]]</small>, '''[[32/3]]''' | ||
| v4 +3 oct | |||
| 276 | |||
|- | |- | ||
| [[ | | 70 | ||
| | | 4148.977 | ||
| | | '''<u>[[11/1]]'''</u> | ||
| vvA4 +3 oct | |||
| 280 | |||
|- | |- | ||
| ''[[23/2]] | | 71 | ||
| | | 4208.248 | ||
| | | '''[[34/3]]''', <small><small>[[23/2]]</small></small> | ||
| vd5 +3 oct | |||
| 284 | |||
|- | |- | ||
| | | 72 | ||
| | | 4267.520 | ||
| | | | ||
| vv5 +3 oct | |||
| 288 | |||
|- | |- | ||
| [[ | | 73 | ||
| + | | 4326.791 | ||
| | | <small><small><small>[[12/1]]</small></small></small> | ||
| ^^5 +3 oct | |||
| 292 | |||
|- | |- | ||
| [[ | | 74 | ||
| + | | 4386.062 | ||
| | | [[25/2]] | ||
| vvm6 +3 oct | |||
| 296 | |||
|- | |- | ||
| [[ | | 75 | ||
| | | 4445.333 | ||
| | | '''<u>[[13/1]]'''</u> | ||
| ^^m6 +3 oct | |||
| 300 | |||
|- | |- | ||
| [[ | | 76 | ||
| | | 4504.604 | ||
| | | '''<u>[[27/2]]'''</u> | ||
| ^M6 +3 oct | |||
| 304 | |||
|- | |- | ||
| | | 77 | ||
| | | 4563.875 | ||
| '''[[14/1]]''' | |||
| ^^d7 +3 oct | |||
| [[ | | 308 | ||
| + | |||
| | |||
|- | |- | ||
| ''[[ | | 78 | ||
| | | 4623.146 | ||
| | | '''[[29/2]]''' | ||
| ^m7 +3 oct | |||
| 312 | |||
|- | |- | ||
| [[ | | 79 | ||
| + | | 4682.417 | ||
| | | '''[[15/1]]''' | ||
| M7 +3 oct | |||
| 316 | |||
|- | |- | ||
| [[ | | 80 | ||
| + | | 4741.688 | ||
| | | '''<u>[[31/2]]'''</u> | ||
| vA7 +3 oct, ^d1 +4 oct | |||
| 320 | |||
|- | |- | ||
| ''[[ | | 81 | ||
| | | 4800.959 | ||
| | | '''<u>[[16/1]]'''</u> | ||
| P1 +4 oct | |||
| 324 | |||
|- | |- | ||
| ''[[ | | 82 | ||
| | | 4860.231 | ||
| | | '''[[33/2]]''' | ||
| vA1 +4 oct, ^d2 +4 oct | |||
| 328 | |||
|- | |- | ||
| | | 83 | ||
| | | 4919.502 | ||
| [[17/1]] | |||
| m2 +4 oct | |||
| [[ | | 332 | ||
| + | |||
| | |||
|- | |- | ||
| | | 84 | ||
| | | 4978.773 | ||
| | | <small><small><small>[[18/1]]</small></small></small> | ||
| vM2 +4 oct | |||
| 336 | |||
|- | |- | ||
| | | 85 | ||
| | | 5038.044 | ||
| + | | | ||
| vvA2 +4 oct | |||
| 340 | |||
|- | |- | ||
| ''[[ | | 86 | ||
| | | 5097.315 | ||
| | | '''<u>[[19/1]]'''</u> | ||
| vm3 +4 oct | |||
| 344 | |||
|- | |- | ||
| | | 87 | ||
| | | 5156.586 | ||
| + | | | ||
| vvM3 +4 oct | |||
| 348 | |||
|- | |- | ||
| [[ | | 88 | ||
| | | 5215.857 | ||
| | | <small><small><small>[[20/1]]</small></small></small> | ||
| ^^M3 +4 oct | |||
| 352 | |||
|- | |- | ||
| | | 89 | ||
| 5275.128 | |||
| | | '''<u>[[21/1]]'''</u> | ||
| vv4 +4 oct | |||
| [[ | | 356 | ||
| + | |||
| | |||
|- | |- | ||
| | | 90 | ||
| | | 5334.399 | ||
| | | <small>[[22/1]]</small> | ||
| ^^4 +4 oct | |||
| 360 | |||
|- | |- | ||
| | | 91 | ||
| | | 5393.671 | ||
| | | | ||
| ^A4 +4 oct | |||
| 364 | |||
|- | |- | ||
| | | 92 | ||
| | | 5452.942 | ||
| | | <small><small>[[23/1]]</small></small> | ||
| ^^d5 +4 oct | |||
| 368 | |||
|- | |- | ||
| | | 93 | ||
| | | 5512.213 | ||
| | | [[24/1]] | ||
| ^5 +4 oct | |||
| 372 | |||
|- | |- | ||
| [[ | | 94 | ||
| + | | 5571.484 | ||
| | | '''<u>[[25/1]]'''</u> | ||
| ^^d6 +4 oct | |||
| 376 | |||
|- | |- | ||
| [[ | | 95 | ||
| | | 5630.755 | ||
| | | '''[[26/1]]''' | ||
| ^m6 +4 oct | |||
| 380 | |||
|- | |- | ||
| | | 96 | ||
| | | 5690.026 | ||
| | | <small>[[27/1]]</small> | ||
| M6 +4 oct | |||
| 384 | |||
|- | |- | ||
| [[ | | 97 | ||
| | | 5749.297 | ||
| | | <small>[[28/1]]</small> | ||
| vA6 +4 oct, ^d7 +4 oct | |||
| 388 | |||
|- | |- | ||
| | | 98 | ||
| | | 5808.568 | ||
| | | <small><small>[[29/1]]</small></small> | ||
| m7 +4 oct | |||
| 392 | |||
|- | |- | ||
| [[ | | 99 | ||
| + | | 5867.839 | ||
| | | <small><small>[[30/1]]</small></small> | ||
| vM7 +4 oct | |||
| 396 | |||
|- | |- | ||
| [[ | | 100 | ||
| + | | 5927.110 | ||
| | | <small>[[31/1]]</small> | ||
| vvA7 +4 oct | |||
| 400 | |||
|- | |- | ||
| | | 101 | ||
| | | 5986.382 | ||
| | | [[32/1]] | ||
| v1 +5 oct | |||
| 404 | |||
| | |||
| | |||
|- | |- | ||
| [[ | | 102 | ||
| + | | 6045.653 | ||
| | | '''[[33/1]]''' | ||
| vvA1 +5 oct | |||
| 408 | |||
|- | |- | ||
| [[ | | 103 | ||
| - | | 6104.924 | ||
| - | | '''<u>[[34/1]]'''</u> | ||
| vm2 +5 oct | |||
| 412 | |||
|} | |||
=== Approximation to JI in 71zpi with prime 2 removed === | |||
==== Interval mappings in 71zpi with prime 2 removed ==== | |||
The following tables show how 34-integer-limit intervals are represented in 71zpi with prime 2 removed. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 34-integer-limit intervals in 71zpi with prime 2 removed (by direct approximation) | |||
|- | |- | ||
! Ratio | |||
| | ! Error (abs, [[Cent|¢]]) | ||
! Error (rel, [[Relative cent|%]]) | |||
|- | |- | ||
| | | [[34/1]] | ||
| | | -0.032 | ||
| | | -0.053 | ||
|- | |- | ||
| [[ | | [[34/19]] | ||
| + | | +0.166 | ||
| + | | +0.281 | ||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''-0.168'' | |||
| ''-0.284'' | |||
|- | |- | ||
| ''[[ | | '''[[19/1]]''' | ||
| ''- | | '''-0.198''' | ||
| ''- | | '''-0.334''' | ||
|- | |- | ||
| | | [[14/3]] | ||
| | | +0.329 | ||
| | | +0.555 | ||
|- | |- | ||
| [[ | | [[19/5]] | ||
| | | +0.374 | ||
| | | +0.631 | ||
|- | |- | ||
| | | [[21/13]] | ||
| | | -0.458 | ||
| | | -0.772 | ||
|- | |- | ||
| [[ | | [[34/5]] | ||
| | | +0.540 | ||
| | | +0.911 | ||
|- | |- | ||
| ''[[ | | '''[[5/1]]''' | ||
| '' | | '''-0.572''' | ||
| '' | | '''-0.965''' | ||
|- | |- | ||
| [[ | | [[30/29]] | ||
| - | | +0.580 | ||
| | | +0.978 | ||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''+0.631'' | |||
| ''+1.064'' | |||
|- | |- | ||
| [[ | | [[27/10]] | ||
| | | -0.689 | ||
| | | -1.163 | ||
|- | |- | ||
| | | [[26/9]] | ||
| | | +0.787 | ||
| | | +1.327 | ||
|- | |- | ||
| | | [[15/14]] | ||
| | | -0.901 | ||
| | | -1.519 | ||
|- | |- | ||
| [[ | | [[25/19]] | ||
| + | | -0.946 | ||
| + | | -1.595 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''+0.959'' | |||
| ''+1.619'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''-0.991'' | |||
| ''-1.672'' | |||
|- | |- | ||
| [[ | | [[31/22]] | ||
| - | | -1.007 | ||
| - | | -1.698 | ||
|- | |- | ||
| | | [[27/22]] | ||
| | | +1.080 | ||
| | | +1.821 | ||
|- | |- | ||
| [[ | | [[34/25]] | ||
| + | | +1.112 | ||
| + | | +1.876 | ||
|- | |- | ||
| | | [[25/1]] | ||
| | | -1.144 | ||
| | | -1.929 | ||
|- | |- | ||
| [[ | | [[29/6]] | ||
| | | -1.151 | ||
| | | -1.943 | ||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''-1.157'' | |||
| ''-1.953'' | |||
|- | |- | ||
| | | [[25/11]] | ||
| | | +1.197 | ||
| | | +2.020 | ||
|- | |- | ||
| [[ | | [[27/2]] | ||
| - | | -1.261 | ||
| - | | -2.128 | ||
|- | |- | ||
| [[ | | [[29/28]] | ||
| + | | -1.480 | ||
| + | | -2.497 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''+1.531'' | |||
| ''+2.584'' | |||
|- | |- | ||
| [[ | | [[31/28]] | ||
| + | | +1.604 | ||
| + | | +2.706 | ||
|- | |- | ||
| | | [[11/5]] | ||
| | | -1.769 | ||
| | | -2.984 | ||
|- | |- | ||
| | | [[31/6]] | ||
| | | +1.932 | ||
| | | +3.260 | ||
|- | |- | ||
| [[ | | [[31/27]] | ||
| | | -2.086 | ||
| | | -3.520 | ||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''-2.103'' | |||
| ''-3.548'' | |||
|- | |- | ||
| | | [[19/11]] | ||
| | | +2.143 | ||
| | | +3.615 | ||
|- | |- | ||
| [[ | | [[33/26]] | ||
| - | | +2.152 | ||
| | | +3.632 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''+2.221'' | |||
| ''+3.746'' | |||
|- | |- | ||
| [[ | | [[34/11]] | ||
| | | +2.309 | ||
| | | +3.896 | ||
|- | |- | ||
| ''[[ | | '''[[11/1]]''' | ||
| ''- | | '''-2.341''' | ||
| ''- | | '''-3.949''' | ||
|- | |- | ||
| [[ | | [[31/30]] | ||
| + | | +2.504 | ||
| + | | +4.225 | ||
|- | |- | ||
| [[ | | [[14/11]] | ||
| | | -2.610 | ||
| | | -4.404 | ||
|- | |- | ||
| | | [[33/14]] | ||
| | | -2.669 | ||
| | | -4.504 | ||
|- | |- | ||
| [[ | | [[31/10]] | ||
| - | | -2.775 | ||
| - | | -4.683 | ||
|- | |- | ||
| [[ | | [[11/3]] | ||
| - | | +2.939 | ||
| - | | +4.959 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''-3.059'' | |||
| ''-5.161'' | |||
|- | |- | ||
| [[ | | [[31/29]] | ||
| - | | +3.084 | ||
| | | +5.203 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''+3.300'' | |||
| ''+5.568'' | |||
|- | |- | ||
| ''[[ | | [[31/2]] | ||
| ''+ | | -3.347 | ||
| ''+ | | -5.647 | ||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+3.388'' | |||
| ''+5.716'' | |||
|- | |- | ||
| | | [[15/11]] | ||
| | | -3.511 | ||
| | | -5.923 | ||
|- | |- | ||
| [[ | | [[28/27]] | ||
| - | | -3.690 | ||
| - | | -6.225 | ||
|- | |- | ||
| ''[[ | | [[25/14]] | ||
| ''- | | +3.807 | ||
| ''- | | +6.423 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-3.846'' | |||
| ''-6.488'' | |||
|- | |- | ||
| | | [[26/15]] | ||
| | | -3.921 | ||
| | | -6.616 | ||
|- | |- | ||
| | | [[9/2]] | ||
| | | +4.019 | ||
| | | +6.780 | ||
|- | |- | ||
| [[19/ | | [[29/22]] | ||
| - | | -4.090 | ||
| - | | -6.901 | ||
|- | |||
| [[29/18]] | |||
| +4.128 | |||
| +6.965 | |||
|- | |||
| [[25/3]] | |||
| +4.136 | |||
| +6.978 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-4.289'' | |||
| ''-7.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''+4.307'' | |||
| ''+7.266'' | |||
|- | |||
| [[21/1]] | |||
| +4.347 | |||
| +7.335 | |||
|- | |||
| [[34/21]] | |||
| -4.379 | |||
| -7.388 | |||
|- | |||
| [[14/5]] | |||
| -4.379 | |||
| -7.388 | |||
|- | |||
| [[26/3]] | |||
| -4.493 | |||
| -7.581 | |||
|- | |||
| [[21/19]] | |||
| +4.545 | |||
| +7.669 | |||
|- | |||
| [[10/9]] | |||
| -4.590 | |||
| -7.745 | |||
|- | |- | ||
| [[ | | [[5/3]] | ||
| | | +4.708 | ||
| | | +7.943 | ||
|- | |- | ||
| [[ | | [[19/14]] | ||
| + | | +4.753 | ||
| + | | +8.019 | ||
|- | |- | ||
| ''[[ | | '''[[13/1]]''' | ||
| '' | | '''+4.805''' | ||
| '' | | '''+8.107''' | ||
|- | |- | ||
| | | [[13/7]] | ||
| | | -4.822 | ||
| | | -8.135 | ||
|- | |- | ||
| ''[[ | | [[34/13]] | ||
| ''- | | -4.837 | ||
| ''- | | -8.160 | ||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''-4.876'' | |||
| ''-8.227'' | |||
|- | |- | ||
| [[ | | [[21/5]] | ||
| | | +4.919 | ||
| | | +8.300 | ||
|- | |- | ||
| [[ | | [[17/7]] | ||
| + | | +4.919 | ||
| + | | +8.300 | ||
|- | |- | ||
| | | [[14/1]] | ||
| | | -4.951 | ||
| | | -8.353 | ||
|- | |- | ||
| ''[[17/10]]'' | | [[19/13]] | ||
| ''+29.575'' | | -5.003 | ||
| ''+49.898'' | | -8.441 | ||
|- | |||
| [[19/3]] | |||
| +5.082 | |||
| +8.574 | |||
|- | |||
| [[29/27]] | |||
| -5.170 | |||
| -8.723 | |||
|- | |||
| [[34/3]] | |||
| +5.248 | |||
| +8.854 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.280''' | |||
| '''-8.908''' | |||
|- | |||
| [[13/5]] | |||
| +5.377 | |||
| +9.072 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''-5.448'' | |||
| ''-9.192'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+5.453'' | |||
| ''+9.199'' | |||
|- | |||
| [[25/21]] | |||
| -5.491 | |||
| -9.264 | |||
|- | |||
| [[14/9]] | |||
| +5.608 | |||
| +9.462 | |||
|- | |||
| [[19/15]] | |||
| +5.653 | |||
| +9.538 | |||
|- | |||
| [[34/15]] | |||
| +5.820 | |||
| +9.819 | |||
|- | |||
| [[15/1]] | |||
| -5.851 | |||
| -9.872 | |||
|- | |||
| [[29/10]] | |||
| -5.859 | |||
| -9.885 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+5.910'' | |||
| ''+9.972'' | |||
|- | |||
| [[25/13]] | |||
| -5.949 | |||
| -10.037 | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/32]]'' | |||
| ''+5.998'' | |||
| ''+10.120'' | |||
|- | |||
| [[27/26]] | |||
| -6.066 | |||
| -10.235 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''+6.239'' | |||
| ''+10.526'' | |||
|- | |||
| [[22/9]] | |||
| -6.359 | |||
| -10.729 | |||
|- | |||
| [[29/2]] | |||
| -6.431 | |||
| -10.850 | |||
|- | |||
| [[33/25]] | |||
| -6.477 | |||
| -10.927 | |||
|- | |||
| [[21/11]] | |||
| +6.688 | |||
| +11.284 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''+6.811'' | |||
| ''+11.491'' | |||
|- | |||
| [[33/2]] | |||
| +6.958 | |||
| +11.739 | |||
|- | |||
| [[33/5]] | |||
| -7.048 | |||
| -11.892 | |||
|- | |||
| [[13/11]] | |||
| +7.146 | |||
| +12.056 | |||
|- | |||
| [[31/18]] | |||
| +7.212 | |||
| +12.168 | |||
|- | |||
| [[31/9]] | |||
| -7.366 | |||
| -12.427 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/29]]'' | |||
| ''+7.391'' | |||
| ''+12.469'' | |||
|- | |||
| [[33/19]] | |||
| -7.422 | |||
| -12.523 | |||
|- | |||
| [[26/11]] | |||
| -7.432 | |||
| -12.539 | |||
|- | |||
| [[33/10]] | |||
| +7.529 | |||
| +12.703 | |||
|- | |||
| [[34/33]] | |||
| +7.589 | |||
| +12.803 | |||
|- | |||
| [[33/1]] | |||
| -7.620 | |||
| -12.857 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-7.767'' | |||
| ''-13.104'' | |||
|- | |||
| [[29/4]] | |||
| +8.147 | |||
| +13.745 | |||
|- | |||
| [[31/26]] | |||
| -8.152 | |||
| -13.754 | |||
|- | |||
| [[11/9]] | |||
| +8.219 | |||
| +13.866 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-8.339'' | |||
| ''-14.069'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/16]]'' | |||
| ''-8.580'' | |||
| ''-14.475'' | |||
|- | |||
| [[26/25]] | |||
| -8.629 | |||
| -14.559 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-8.668'' | |||
| ''-14.624'' | |||
|- | |||
| [[29/20]] | |||
| +8.719 | |||
| +14.710 | |||
|- | |||
| [[15/2]] | |||
| +8.726 | |||
| +14.723 | |||
|- | |||
| [[28/9]] | |||
| -8.969 | |||
| -15.133 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+9.130'' | |||
| ''+15.404'' | |||
|- | |||
| [[26/5]] | |||
| -9.201 | |||
| -15.523 | |||
|- | |||
| [[3/2]] | |||
| +9.298 | |||
| +15.688 | |||
|- | |||
| [[25/9]] | |||
| +9.416 | |||
| +15.886 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''-9.467'' | |||
| ''-15.972'' | |||
|- | |||
| [[26/19]] | |||
| -9.575 | |||
| -16.154 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+9.627''' | |||
| '''+16.242''' | |||
|- | |||
| [[34/7]] | |||
| -9.659 | |||
| -16.296 | |||
|- | |||
| [[17/13]] | |||
| +9.741 | |||
| +16.435 | |||
|- | |||
| [[14/13]] | |||
| -9.756 | |||
| -16.460 | |||
|- | |||
| [[26/1]] | |||
| -9.773 | |||
| -16.488 | |||
|- | |||
| [[19/7]] | |||
| -9.825 | |||
| -16.576 | |||
|- | |||
| [[10/3]] | |||
| -9.870 | |||
| -16.652 | |||
|- | |||
| [[9/5]] | |||
| -9.988 | |||
| -16.851 | |||
|- | |||
| [[13/3]] | |||
| +10.085 | |||
| +17.015 | |||
|- | |||
| [[23/17]] | |||
| +10.121 | |||
| +17.076 | |||
|- | |||
| [[7/5]] | |||
| +10.199 | |||
| +17.207 | |||
|- | |||
| [[21/17]] | |||
| -10.199 | |||
| -17.207 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+10.258'' | |||
| ''+17.307'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/12]]'' | |||
| ''-10.289'' | |||
| ''-17.360'' | |||
|- | |||
| [[33/31]] | |||
| +10.305 | |||
| +17.386 | |||
|- | |||
| [[19/9]] | |||
| +10.361 | |||
| +17.481 | |||
|- | |||
| [[29/9]] | |||
| -10.450 | |||
| -17.630 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+10.456'' | |||
| ''+17.641'' | |||
|- | |||
| [[34/9]] | |||
| +10.528 | |||
| +17.762 | |||
|- | |||
| [[9/1]] | |||
| -10.559 | |||
| -17.815 | |||
|- | |||
| [[15/13]] | |||
| -10.657 | |||
| -17.979 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''-10.732'' | |||
| ''-18.107'' | |||
|- | |||
| [[25/7]] | |||
| -10.771 | |||
| -18.172 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''+10.830'' | |||
| ''+18.271'' | |||
|- | |||
| [[27/14]] | |||
| -10.888 | |||
| -18.370 | |||
|- | |||
| [[22/15]] | |||
| -11.067 | |||
| -18.672 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''-11.190'' | |||
| ''-18.879'' | |||
|- | |||
| [[31/4]] | |||
| +11.231 | |||
| +18.948 | |||
|- | |||
| [[29/26]] | |||
| -11.236 | |||
| -18.957 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''-11.278'' | |||
| ''-19.027'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''-11.401'' | |||
| ''-19.236'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''+11.519'' | |||
| ''+19.434'' | |||
|- | |||
| [[22/3]] | |||
| -11.639 | |||
| -19.637 | |||
|- | |||
| [[31/20]] | |||
| +11.803 | |||
| +19.913 | |||
|- | |||
| [[33/28]] | |||
| +11.908 | |||
| +20.092 | |||
|- | |||
| [[11/7]] | |||
| -11.968 | |||
| -20.191 | |||
|- | |||
| [[31/15]] | |||
| -12.074 | |||
| -20.370 | |||
|- | |||
| [[11/2]] | |||
| +12.237 | |||
| +20.646 | |||
|- | |||
| [[33/13]] | |||
| -12.425 | |||
| -20.964 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''-12.475'' | |||
| ''-21.047'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''+12.598'' | |||
| ''+21.255'' | |||
|- | |||
| [[31/3]] | |||
| -12.645 | |||
| -21.335 | |||
|- | |||
| [[11/10]] | |||
| +12.809 | |||
| +21.611 | |||
|- | |||
| [[31/14]] | |||
| -12.974 | |||
| -21.890 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''-13.047'' | |||
| ''-22.012'' | |||
|- | |||
| [[27/4]] | |||
| +13.317 | |||
| +22.468 | |||
|- | |||
| [[33/29]] | |||
| +13.389 | |||
| +22.589 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-13.420'' | |||
| ''-22.642'' | |||
|- | |||
| [[29/12]] | |||
| +13.427 | |||
| +22.653 | |||
|- | |||
| [[25/2]] | |||
| +13.434 | |||
| +22.666 | |||
|- | |||
| [[27/11]] | |||
| -13.498 | |||
| -22.774 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+13.587'' | |||
| ''+22.923'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/23]]'' | |||
| ''+13.595'' | |||
| ''+22.937'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''-13.618'' | |||
| ''-22.976'' | |||
|- | |||
| [[28/15]] | |||
| -13.677 | |||
| -23.076 | |||
|- | |||
| [[27/20]] | |||
| +13.889 | |||
| +23.432 | |||
|- | |||
| [[5/2]] | |||
| +14.006 | |||
| +23.631 | |||
|- | |||
| [[26/21]] | |||
| -14.120 | |||
| -23.823 | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/23]]'' | |||
| ''+14.174'' | |||
| ''+23.915'' | |||
|- | |||
| [[28/3]] | |||
| -14.249 | |||
| -24.041 | |||
|- | |||
| [[19/2]] | |||
| +14.380 | |||
| +24.261 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''-14.410'' | |||
| ''-24.311'' | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+14.546''' | |||
| '''+24.542''' | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-14.578''' | |||
| '''-24.595''' | |||
|- | |||
| [[27/25]] | |||
| -14.695 | |||
| -24.793 | |||
|- | |||
| [[19/17]] | |||
| -14.744 | |||
| -24.876 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/6]]'' | |||
| ''-14.746'' | |||
| ''-24.879'' | |||
|- | |||
| [[7/3]] | |||
| +14.907 | |||
| +25.150 | |||
|- | |||
| [[19/10]] | |||
| +14.952 | |||
| +25.226 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''+14.997'' | |||
| ''+25.303'' | |||
|- | |||
| [[23/7]] | |||
| +15.040 | |||
| +25.375 | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''+15.075'' | |||
| ''+25.434'' | |||
|- | |||
| [[17/5]] | |||
| +15.118 | |||
| +25.507 | |||
|- | |||
| [[10/1]] | |||
| -15.150 | |||
| -25.560 | |||
|- | |||
| [[29/15]] | |||
| -15.157 | |||
| -25.573 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''+15.209'' | |||
| ''+25.659'' | |||
|- | |||
| [[27/5]] | |||
| -15.267 | |||
| -25.758 | |||
|- | |||
| [[13/9]] | |||
| +15.364 | |||
| +25.922 | |||
|- | |||
| [[15/7]] | |||
| -15.478 | |||
| -26.115 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''+15.537'' | |||
| ''+26.214'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''-15.569'' | |||
| ''-26.267'' | |||
|- | |||
| [[31/11]] | |||
| -15.584 | |||
| -26.294 | |||
|- | |||
| [[27/19]] | |||
| -15.641 | |||
| -26.389 | |||
|- | |||
| [[25/17]] | |||
| -15.690 | |||
| -26.471 | |||
|- | |||
| [[29/3]] | |||
| -15.729 | |||
| -26.538 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''-15.735'' | |||
| ''-26.548'' | |||
|- | |||
| [[25/22]] | |||
| +15.775 | |||
| +26.615 | |||
|- | |||
| [[34/27]] | |||
| +15.807 | |||
| +26.670 | |||
|- | |||
| [[27/1]] | |||
| -15.839 | |||
| -26.723 | |||
|- | |||
| [[29/14]] | |||
| -16.058 | |||
| -27.093 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''+16.109'' | |||
| ''+27.179'' | |||
|- | |||
| [[22/5]] | |||
| -16.347 | |||
| -27.580 | |||
|- | |||
| [[31/12]] | |||
| +16.510 | |||
| +27.856 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/23]]'' | |||
| ''+16.679'' | |||
| ''+28.140'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''-16.681'' | |||
| ''-28.144'' | |||
|- | |||
| [[22/19]] | |||
| -16.721 | |||
| -28.210 | |||
|- | |||
| [[31/25]] | |||
| -16.782 | |||
| -28.313 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''-16.798'' | |||
| ''-28.342'' | |||
|- | |||
| [[17/11]] | |||
| +16.887 | |||
| +28.491 | |||
|- | |||
| [[22/1]] | |||
| -16.918 | |||
| -28.544 | |||
|- | |||
| [[28/11]] | |||
| -17.188 | |||
| -28.999 | |||
|- | |||
| [[33/7]] | |||
| -17.247 | |||
| -29.099 | |||
|- | |||
| [[31/5]] | |||
| -17.353 | |||
| -29.278 | |||
|- | |||
| [[11/6]] | |||
| +17.517 | |||
| +29.554 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/22]]'' | |||
| ''-17.685'' | |||
| ''-29.838'' | |||
|- | |||
| [[31/19]] | |||
| -17.727 | |||
| -29.908 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''-17.878'' | |||
| ''-30.163'' | |||
|- | |||
| [[34/31]] | |||
| +17.893 | |||
| +30.189 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''-17.925''' | |||
| '''-30.243''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-17.966'' | |||
| ''-30.311'' | |||
|- | |||
| [[30/11]] | |||
| -18.089 | |||
| -30.519 | |||
|- | |||
| [[28/25]] | |||
| -18.385 | |||
| -31.019 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''-18.424'' | |||
| ''-31.084'' | |||
|- | |||
| [[9/4]] | |||
| +18.597 | |||
| +31.375 | |||
|- | |||
| [[29/11]] | |||
| -18.668 | |||
| -31.496 | |||
|- | |||
| [[25/6]] | |||
| +18.714 | |||
| +31.574 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''+18.765'' | |||
| ''+31.659'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''-18.885'' | |||
| ''-31.861'' | |||
|- | |||
| [[21/2]] | |||
| +18.925 | |||
| +31.930 | |||
|- | |||
| [[28/5]] | |||
| -18.957 | |||
| -31.983 | |||
|- | |||
| [[20/9]] | |||
| -19.168 | |||
| -32.340 | |||
|- | |||
| [[6/5]] | |||
| -19.286 | |||
| -32.538 | |||
|- | |||
| [[28/19]] | |||
| -19.331 | |||
| -32.614 | |||
|- | |||
| [[13/2]] | |||
| +19.383 | |||
| +32.702 | |||
|- | |||
| [[26/7]] | |||
| -19.400 | |||
| -32.731 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''-19.454'' | |||
| ''-32.822'' | |||
|- | |||
| [[21/10]] | |||
| +19.497 | |||
| +32.895 | |||
|- | |||
| [[17/14]] | |||
| +19.497 | |||
| +32.895 | |||
|- | |||
| [[28/1]] | |||
| -19.529 | |||
| -32.948 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''+19.588'' | |||
| ''+33.047'' | |||
|- | |||
| [[19/6]] | |||
| +19.660 | |||
| +33.169 | |||
|- | |||
| [[17/3]] | |||
| +19.826 | |||
| +33.450 | |||
|- | |||
| [[6/1]] | |||
| -19.858 | |||
| -33.503 | |||
|- | |||
| [[23/13]] | |||
| +19.862 | |||
| +33.511 | |||
|- | |||
| [[29/25]] | |||
| -19.865 | |||
| -33.516 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''+19.916'' | |||
| ''+33.602'' | |||
|- | |||
| [[13/10]] | |||
| +19.955 | |||
| +33.667 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/2]]'' | |||
| ''-20.026'' | |||
| ''-33.787'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''-20.030'' | |||
| ''-33.795'' | |||
|- | |||
| [[9/7]] | |||
| -20.186 | |||
| -34.058 | |||
|- | |||
| [[30/19]] | |||
| -20.231 | |||
| -34.134 | |||
|- | |||
| [[23/21]] | |||
| +20.320 | |||
| +34.283 | |||
|- | |||
| [[17/15]] | |||
| +20.398 | |||
| +34.414 | |||
|- | |||
| [[30/1]] | |||
| -20.429 | |||
| -34.468 | |||
|- | |||
| [[29/5]] | |||
| -20.437 | |||
| -34.481 | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''-20.488'' | |||
| ''-34.567'' | |||
|- | |||
| [[27/13]] | |||
| -20.644 | |||
| -34.830 | |||
|- | |||
| [[29/19]] | |||
| -20.811 | |||
| -35.111 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+20.817'' | |||
| ''+35.122'' | |||
|- | |||
| [[34/29]] | |||
| +20.977 | |||
| +35.392 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''+20.985'' | |||
| ''+35.406'' | |||
|- | |||
| '''[[29/1]]''' | |||
| '''-21.009''' | |||
| '''-35.445''' | |||
|- | |||
| [[22/21]] | |||
| -21.266 | |||
| -35.879 | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-21.389'' | |||
| ''-36.086'' | |||
|- | |||
| [[33/4]] | |||
| +21.536 | |||
| +36.334 | |||
|- | |||
| [[22/13]] | |||
| -21.724 | |||
| -36.651 | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''-21.968'' | |||
| ''-37.064'' | |||
|- | |||
| [[33/20]] | |||
| +22.107 | |||
| +37.299 | |||
|- | |||
| [[33/17]] | |||
| -22.167 | |||
| -37.399 | |||
|- | |||
| [[31/21]] | |||
| -22.273 | |||
| -37.577 | |||
|- | |||
| [[29/8]] | |||
| +22.725 | |||
| +38.340 | |||
|- | |||
| [[31/13]] | |||
| -22.730 | |||
| -38.350 | |||
|- | |||
| [[18/11]] | |||
| -22.797 | |||
| -38.462 | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/8]]'' | |||
| ''-23.158'' | |||
| ''-39.071'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''-23.245'' | |||
| ''-39.219'' | |||
|- | |||
| [[15/4]] | |||
| +23.304 | |||
| +39.318 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+23.708'' | |||
| ''+39.999'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/17]]'' | |||
| ''+23.716'' | |||
| ''+40.013'' | |||
|- | |||
| [[4/3]] | |||
| -23.876 | |||
| -40.283 | |||
|- | |||
| [[25/18]] | |||
| +23.994 | |||
| +40.481 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''-24.045'' | |||
| ''-40.567'' | |||
|- | |||
| [[7/2]] | |||
| +24.205 | |||
| +40.838 | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/17]]'' | |||
| ''+24.295'' | |||
| ''+40.990'' | |||
|- | |||
| [[26/17]] | |||
| -24.319 | |||
| -41.030 | |||
|- | |||
| [[28/13]] | |||
| -24.334 | |||
| -41.055 | |||
|- | |||
| [[20/3]] | |||
| -24.448 | |||
| -41.248 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''+24.507'' | |||
| ''+41.347'' | |||
|- | |||
| [[18/5]] | |||
| -24.565 | |||
| -41.446 | |||
|- | |||
| [[13/6]] | |||
| +24.663 | |||
| +41.610 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''+24.667''' | |||
| '''+41.618''' | |||
|- | |||
| [[34/23]] | |||
| -24.699 | |||
| -41.671 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''+24.738'' | |||
| ''+41.738'' | |||
|- | |||
| [[10/7]] | |||
| -24.777 | |||
| -41.802 | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/23]]'' | |||
| ''+24.831'' | |||
| ''+41.894'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''+24.836'' | |||
| ''+41.902'' | |||
|- | |||
| [[23/19]] | |||
| +24.865 | |||
| +41.952 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/6]]'' | |||
| ''-24.867'' | |||
| ''-41.955'' | |||
|- | |||
| [[19/18]] | |||
| +24.939 | |||
| +42.076 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''-25.034'' | |||
| ''-42.236'' | |||
|- | |||
| [[17/9]] | |||
| +25.106 | |||
| +42.357 | |||
|- | |||
| [[18/1]] | |||
| -25.137 | |||
| -42.411 | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''+25.196'' | |||
| ''+42.510'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''-25.196'' | |||
| ''-42.510'' | |||
|- | |||
| [[30/13]] | |||
| -25.235 | |||
| -42.575 | |||
|- | |||
| [[23/5]] | |||
| +25.239 | |||
| +42.582 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''-25.310'' | |||
| ''-42.702'' | |||
|- | |||
| [[29/21]] | |||
| -25.356 | |||
| -42.780 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''+25.407'' | |||
| ''+42.866'' | |||
|- | |||
| [[27/7]] | |||
| -25.466 | |||
| -42.965 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''-25.768'' | |||
| ''-43.475'' | |||
|- | |||
| [[31/8]] | |||
| +25.809 | |||
| +43.543 | |||
|- | |||
| [[25/23]] | |||
| -25.811 | |||
| -43.547 | |||
|- | |||
| [[29/13]] | |||
| -25.814 | |||
| -43.553 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/12]]'' | |||
| ''-25.979'' | |||
| ''-43.831'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-26.097'' | |||
| ''-44.029'' | |||
|- | |||
| [[22/7]] | |||
| -26.546 | |||
| -44.787 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/17]]'' | |||
| ''+26.800'' | |||
| ''+45.215'' | |||
|- | |||
| [[11/4]] | |||
| +26.815 | |||
| +45.242 | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/23]]'' | |||
| ''+26.984'' | |||
| ''+45.526'' | |||
|- | |||
| [[23/11]] | |||
| +27.008 | |||
| +45.567 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+27.176'' | |||
| ''+45.851'' | |||
|- | |||
| [[20/11]] | |||
| -27.387 | |||
| -46.206 | |||
|- | |||
| [[31/7]] | |||
| -27.552 | |||
| -46.485 | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/17]]'' | |||
| ''+27.806'' | |||
| ''+46.914'' | |||
|- | |||
| [[27/8]] | |||
| +27.895 | |||
| +47.063 | |||
|- | |||
| [[29/24]] | |||
| +28.004 | |||
| +47.248 | |||
|- | |||
| [[25/4]] | |||
| +28.012 | |||
| +47.261 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''-28.165'' | |||
| ''-47.518'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''-28.183'' | |||
| ''-47.549'' | |||
|- | |||
| [[5/4]] | |||
| +28.584 | |||
| +48.226 | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/7]]'' | |||
| ''+28.635'' | |||
| ''+48.312'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/15]]'' | |||
| ''-28.752'' | |||
| ''-48.510'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''+28.886'' | |||
| ''+48.735'' | |||
|- | |||
| [[19/4]] | |||
| +28.958 | |||
| +48.857 | |||
|- | |||
| [[17/2]] | |||
| +29.124 | |||
| +49.137 | |||
|- | |||
| [[4/1]] | |||
| -29.156 | |||
| -49.191 | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/7]]'' | |||
| ''+29.215'' | |||
| ''+49.290'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/3]]'' | |||
| ''-29.324'' | |||
| ''-49.475'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''+29.329'' | |||
| ''+49.482'' | |||
|- | |||
| [[7/6]] | |||
| +29.485 | |||
| +49.745 | |||
|- | |||
| [[20/19]] | |||
| -29.530 | |||
| -49.821 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''+29.544'' | |||
| ''+49.845'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/10]]'' | |||
| ''-29.575'' | |||
| ''-49.898'' | |||
|- | |- | ||
| [[23/14]] | | [[23/14]] | ||
| -29.618 | | +29.618 | ||
| -49.971 | | +49.971 | ||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 34-integer-limit intervals in 71zpi with prime 2 removed (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[34/1]] | |||
| -0.032 | |||
| -0.053 | |||
|- | |||
| [[34/19]] | |||
| +0.166 | |||
| +0.281 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''-0.198''' | |||
| '''-0.334''' | |||
|- | |||
| [[14/3]] | |||
| +0.329 | |||
| +0.555 | |||
|- | |||
| [[19/5]] | |||
| +0.374 | |||
| +0.631 | |||
|- | |||
| [[21/13]] | |||
| -0.458 | |||
| -0.772 | |||
|- | |||
| [[34/5]] | |||
| +0.540 | |||
| +0.911 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''-0.572''' | |||
| '''-0.965''' | |||
|- | |||
| [[30/29]] | |||
| +0.580 | |||
| +0.978 | |||
|- | |||
| [[27/10]] | |||
| -0.689 | |||
| -1.163 | |||
|- | |||
| [[26/9]] | |||
| +0.787 | |||
| +1.327 | |||
|- | |||
| [[15/14]] | |||
| -0.901 | |||
| -1.519 | |||
|- | |||
| [[25/19]] | |||
| -0.946 | |||
| -1.595 | |||
|- | |||
| [[31/22]] | |||
| -1.007 | |||
| -1.698 | |||
|- | |||
| [[27/22]] | |||
| +1.080 | |||
| +1.821 | |||
|- | |||
| [[34/25]] | |||
| +1.112 | |||
| +1.876 | |||
|- | |||
| [[25/1]] | |||
| -1.144 | |||
| -1.929 | |||
|- | |||
| [[29/6]] | |||
| -1.151 | |||
| -1.943 | |||
|- | |||
| [[25/11]] | |||
| +1.197 | |||
| +2.020 | |||
|- | |||
| [[27/2]] | |||
| -1.261 | |||
| -2.128 | |||
|- | |||
| [[29/28]] | |||
| -1.480 | |||
| -2.497 | |||
|- | |||
| [[31/28]] | |||
| +1.604 | |||
| +2.706 | |||
|- | |||
| [[11/5]] | |||
| -1.769 | |||
| -2.984 | |||
|- | |||
| [[31/6]] | |||
| +1.932 | |||
| +3.260 | |||
|- | |||
| [[31/27]] | |||
| -2.086 | |||
| -3.520 | |||
|- | |||
| [[19/11]] | |||
| +2.143 | |||
| +3.615 | |||
|- | |||
| [[33/26]] | |||
| +2.152 | |||
| +3.632 | |||
|- | |||
| [[34/11]] | |||
| +2.309 | |||
| +3.896 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-2.341''' | |||
| '''-3.949''' | |||
|- | |||
| [[31/30]] | |||
| +2.504 | |||
| +4.225 | |||
|- | |||
| [[14/11]] | |||
| -2.610 | |||
| -4.404 | |||
|- | |||
| [[33/14]] | |||
| -2.669 | |||
| -4.504 | |||
|- | |||
| [[31/10]] | |||
| -2.775 | |||
| -4.683 | |||
|- | |||
| [[11/3]] | |||
| +2.939 | |||
| +4.959 | |||
|- | |||
| [[31/29]] | |||
| +3.084 | |||
| +5.203 | |||
|- | |||
| [[31/2]] | |||
| -3.347 | |||
| -5.647 | |||
|- | |||
| [[15/11]] | |||
| -3.511 | |||
| -5.923 | |||
|- | |||
| [[28/27]] | |||
| -3.690 | |||
| -6.225 | |||
|- | |||
| [[25/14]] | |||
| +3.807 | |||
| +6.423 | |||
|- | |||
| [[26/15]] | |||
| -3.921 | |||
| -6.616 | |||
|- | |||
| [[9/2]] | |||
| +4.019 | |||
| +6.780 | |||
|- | |||
| [[29/22]] | |||
| -4.090 | |||
| -6.901 | |||
|- | |||
| [[29/18]] | |||
| +4.128 | |||
| +6.965 | |||
|- | |||
| [[25/3]] | |||
| +4.136 | |||
| +6.978 | |||
|- | |||
| [[21/1]] | |||
| +4.347 | |||
| +7.335 | |||
|- | |||
| [[34/21]] | |||
| -4.379 | |||
| -7.388 | |||
|- | |||
| [[14/5]] | |||
| -4.379 | |||
| -7.388 | |||
|- | |||
| [[26/3]] | |||
| -4.493 | |||
| -7.581 | |||
|- | |||
| [[21/19]] | |||
| +4.545 | |||
| +7.669 | |||
|- | |||
| [[10/9]] | |||
| -4.590 | |||
| -7.745 | |||
|- | |||
| [[5/3]] | |||
| +4.708 | |||
| +7.943 | |||
|- | |||
| [[19/14]] | |||
| +4.753 | |||
| +8.019 | |||
|- | |||
| '''[[13/1]]''' | |||
| '''+4.805''' | |||
| '''+8.107''' | |||
|- | |||
| [[13/7]] | |||
| -4.822 | |||
| -8.135 | |||
|- | |||
| [[34/13]] | |||
| -4.837 | |||
| -8.160 | |||
|- | |||
| [[21/5]] | |||
| +4.919 | |||
| +8.300 | |||
|- | |||
| [[17/7]] | |||
| +4.919 | |||
| +8.300 | |||
|- | |||
| [[14/1]] | |||
| -4.951 | |||
| -8.353 | |||
|- | |||
| [[19/13]] | |||
| -5.003 | |||
| -8.441 | |||
|- | |||
| [[19/3]] | |||
| +5.082 | |||
| +8.574 | |||
|- | |||
| [[29/27]] | |||
| -5.170 | |||
| -8.723 | |||
|- | |||
| [[34/3]] | |||
| +5.248 | |||
| +8.854 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.280''' | |||
| '''-8.908''' | |||
|- | |||
| [[13/5]] | |||
| +5.377 | |||
| +9.072 | |||
|- | |||
| [[25/21]] | |||
| -5.491 | |||
| -9.264 | |||
|- | |||
| [[14/9]] | |||
| +5.608 | |||
| +9.462 | |||
|- | |||
| [[19/15]] | |||
| +5.653 | |||
| +9.538 | |||
|- | |||
| [[34/15]] | |||
| +5.820 | |||
| +9.819 | |||
|- | |||
| [[15/1]] | |||
| -5.851 | |||
| -9.872 | |||
|- | |||
| [[29/10]] | |||
| -5.859 | |||
| -9.885 | |||
|- | |||
| [[25/13]] | |||
| -5.949 | |||
| -10.037 | |||
|- | |||
| [[27/26]] | |||
| -6.066 | |||
| -10.235 | |||
|- | |||
| [[22/9]] | |||
| -6.359 | |||
| -10.729 | |||
|- | |||
| [[29/2]] | |||
| -6.431 | |||
| -10.850 | |||
|- | |||
| [[33/25]] | |||
| -6.477 | |||
| -10.927 | |||
|- | |||
| [[21/11]] | |||
| +6.688 | |||
| +11.284 | |||
|- | |||
| [[33/2]] | |||
| +6.958 | |||
| +11.739 | |||
|- | |||
| [[33/5]] | |||
| -7.048 | |||
| -11.892 | |||
|- | |||
| [[13/11]] | |||
| +7.146 | |||
| +12.056 | |||
|- | |||
| [[31/18]] | |||
| +7.212 | |||
| +12.168 | |||
|- | |||
| [[31/9]] | |||
| -7.366 | |||
| -12.427 | |||
|- | |||
| [[33/19]] | |||
| -7.422 | |||
| -12.523 | |||
|- | |||
| [[26/11]] | |||
| -7.432 | |||
| -12.539 | |||
|- | |||
| [[33/10]] | |||
| +7.529 | |||
| +12.703 | |||
|- | |||
| [[34/33]] | |||
| +7.589 | |||
| +12.803 | |||
|- | |||
| [[33/1]] | |||
| -7.620 | |||
| -12.857 | |||
|- | |||
| [[29/4]] | |||
| +8.147 | |||
| +13.745 | |||
|- | |||
| [[31/26]] | |||
| -8.152 | |||
| -13.754 | |||
|- | |||
| [[11/9]] | |||
| +8.219 | |||
| +13.866 | |||
|- | |||
| [[26/25]] | |||
| -8.629 | |||
| -14.559 | |||
|- | |||
| [[29/20]] | |||
| +8.719 | |||
| +14.710 | |||
|- | |||
| [[15/2]] | |||
| +8.726 | |||
| +14.723 | |||
|- | |||
| [[28/9]] | |||
| -8.969 | |||
| -15.133 | |||
|- | |||
| [[26/5]] | |||
| -9.201 | |||
| -15.523 | |||
|- | |||
| [[3/2]] | |||
| +9.298 | |||
| +15.688 | |||
|- | |||
| [[25/9]] | |||
| +9.416 | |||
| +15.886 | |||
|- | |||
| [[26/19]] | |||
| -9.575 | |||
| -16.154 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+9.627''' | |||
| '''+16.242''' | |||
|- | |||
| [[34/7]] | |||
| -9.659 | |||
| -16.296 | |||
|- | |||
| [[17/13]] | |||
| +9.741 | |||
| +16.435 | |||
|- | |||
| [[14/13]] | |||
| -9.756 | |||
| -16.460 | |||
|- | |||
| [[26/1]] | |||
| -9.773 | |||
| -16.488 | |||
|- | |||
| [[19/7]] | |||
| -9.825 | |||
| -16.576 | |||
|- | |||
| [[10/3]] | |||
| -9.870 | |||
| -16.652 | |||
|- | |||
| [[9/5]] | |||
| -9.988 | |||
| -16.851 | |||
|- | |||
| [[13/3]] | |||
| +10.085 | |||
| +17.015 | |||
|- | |||
| [[23/17]] | |||
| +10.121 | |||
| +17.076 | |||
|- | |||
| [[7/5]] | |||
| +10.199 | |||
| +17.207 | |||
|- | |||
| [[21/17]] | |||
| -10.199 | |||
| -17.207 | |||
|- | |||
| [[33/31]] | |||
| +10.305 | |||
| +17.386 | |||
|- | |||
| [[19/9]] | |||
| +10.361 | |||
| +17.481 | |||
|- | |||
| [[29/9]] | |||
| -10.450 | |||
| -17.630 | |||
|- | |||
| [[34/9]] | |||
| +10.528 | |||
| +17.762 | |||
|- | |||
| [[9/1]] | |||
| -10.559 | |||
| -17.815 | |||
|- | |||
| [[15/13]] | |||
| -10.657 | |||
| -17.979 | |||
|- | |||
| [[25/7]] | |||
| -10.771 | |||
| -18.172 | |||
|- | |||
| [[27/14]] | |||
| -10.888 | |||
| -18.370 | |||
|- | |||
| [[22/15]] | |||
| -11.067 | |||
| -18.672 | |||
|- | |||
| [[31/4]] | |||
| +11.231 | |||
| +18.948 | |||
|- | |||
| [[29/26]] | |||
| -11.236 | |||
| -18.957 | |||
|- | |||
| [[22/3]] | |||
| -11.639 | |||
| -19.637 | |||
|- | |||
| [[31/20]] | |||
| +11.803 | |||
| +19.913 | |||
|- | |||
| [[33/28]] | |||
| +11.908 | |||
| +20.092 | |||
|- | |||
| [[11/7]] | |||
| -11.968 | |||
| -20.191 | |||
|- | |||
| [[31/15]] | |||
| -12.074 | |||
| -20.370 | |||
|- | |||
| [[11/2]] | |||
| +12.237 | |||
| +20.646 | |||
|- | |||
| [[33/13]] | |||
| -12.425 | |||
| -20.964 | |||
|- | |||
| [[31/3]] | |||
| -12.645 | |||
| -21.335 | |||
|- | |||
| [[11/10]] | |||
| +12.809 | |||
| +21.611 | |||
|- | |||
| [[31/14]] | |||
| -12.974 | |||
| -21.890 | |||
|- | |||
| [[27/4]] | |||
| +13.317 | |||
| +22.468 | |||
|- | |||
| [[33/29]] | |||
| +13.389 | |||
| +22.589 | |||
|- | |||
| [[29/12]] | |||
| +13.427 | |||
| +22.653 | |||
|- | |||
| [[25/2]] | |||
| +13.434 | |||
| +22.666 | |||
|- | |||
| [[27/11]] | |||
| -13.498 | |||
| -22.774 | |||
|- | |||
| [[28/15]] | |||
| -13.677 | |||
| -23.076 | |||
|- | |||
| [[27/20]] | |||
| +13.889 | |||
| +23.432 | |||
|- | |||
| [[5/2]] | |||
| +14.006 | |||
| +23.631 | |||
|- | |||
| [[26/21]] | |||
| -14.120 | |||
| -23.823 | |||
|- | |||
| [[28/3]] | |||
| -14.249 | |||
| -24.041 | |||
|- | |||
| [[19/2]] | |||
| +14.380 | |||
| +24.261 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+14.546''' | |||
| '''+24.542''' | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-14.578''' | |||
| '''-24.595''' | |||
|- | |||
| [[27/25]] | |||
| -14.695 | |||
| -24.793 | |||
|- | |||
| [[19/17]] | |||
| -14.744 | |||
| -24.876 | |||
|- | |||
| [[7/3]] | |||
| +14.907 | |||
| +25.150 | |||
|- | |||
| [[19/10]] | |||
| +14.952 | |||
| +25.226 | |||
|- | |||
| [[23/7]] | |||
| +15.040 | |||
| +25.375 | |||
|- | |||
| [[17/5]] | |||
| +15.118 | |||
| +25.507 | |||
|- | |||
| [[10/1]] | |||
| -15.150 | |||
| -25.560 | |||
|- | |||
| [[29/15]] | |||
| -15.157 | |||
| -25.573 | |||
|- | |||
| [[27/5]] | |||
| -15.267 | |||
| -25.758 | |||
|- | |||
| [[13/9]] | |||
| +15.364 | |||
| +25.922 | |||
|- | |||
| [[15/7]] | |||
| -15.478 | |||
| -26.115 | |||
|- | |||
| [[31/11]] | |||
| -15.584 | |||
| -26.294 | |||
|- | |||
| [[27/19]] | |||
| -15.641 | |||
| -26.389 | |||
|- | |||
| [[25/17]] | |||
| -15.690 | |||
| -26.471 | |||
|- | |||
| [[29/3]] | |||
| -15.729 | |||
| -26.538 | |||
|- | |||
| [[25/22]] | |||
| +15.775 | |||
| +26.615 | |||
|- | |||
| [[34/27]] | |||
| +15.807 | |||
| +26.670 | |||
|- | |||
| [[27/1]] | |||
| -15.839 | |||
| -26.723 | |||
|- | |||
| [[29/14]] | |||
| -16.058 | |||
| -27.093 | |||
|- | |||
| [[22/5]] | |||
| -16.347 | |||
| -27.580 | |||
|- | |||
| [[31/12]] | |||
| +16.510 | |||
| +27.856 | |||
|- | |||
| [[22/19]] | |||
| -16.721 | |||
| -28.210 | |||
|- | |||
| [[31/25]] | |||
| -16.782 | |||
| -28.313 | |||
|- | |||
| [[17/11]] | |||
| +16.887 | |||
| +28.491 | |||
|- | |||
| [[22/1]] | |||
| -16.918 | |||
| -28.544 | |||
|- | |||
| [[28/11]] | |||
| -17.188 | |||
| -28.999 | |||
|- | |||
| [[33/7]] | |||
| -17.247 | |||
| -29.099 | |||
|- | |||
| [[31/5]] | |||
| -17.353 | |||
| -29.278 | |||
|- | |||
| [[11/6]] | |||
| +17.517 | |||
| +29.554 | |||
|- | |||
| [[31/19]] | |||
| -17.727 | |||
| -29.908 | |||
|- | |||
| [[34/31]] | |||
| +17.893 | |||
| +30.189 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''-17.925''' | |||
| '''-30.243''' | |||
|- | |||
| [[30/11]] | |||
| -18.089 | |||
| -30.519 | |||
|- | |||
| [[28/25]] | |||
| -18.385 | |||
| -31.019 | |||
|- | |||
| [[9/4]] | |||
| +18.597 | |||
| +31.375 | |||
|- | |||
| [[29/11]] | |||
| -18.668 | |||
| -31.496 | |||
|- | |||
| [[25/6]] | |||
| +18.714 | |||
| +31.574 | |||
|- | |||
| [[21/2]] | |||
| +18.925 | |||
| +31.930 | |||
|- | |||
| [[28/5]] | |||
| -18.957 | |||
| -31.983 | |||
|- | |||
| [[20/9]] | |||
| -19.168 | |||
| -32.340 | |||
|- | |||
| [[6/5]] | |||
| -19.286 | |||
| -32.538 | |||
|- | |||
| [[28/19]] | |||
| -19.331 | |||
| -32.614 | |||
|- | |||
| [[13/2]] | |||
| +19.383 | |||
| +32.702 | |||
|- | |||
| [[26/7]] | |||
| -19.400 | |||
| -32.731 | |||
|- | |||
| [[21/10]] | |||
| +19.497 | |||
| +32.895 | |||
|- | |||
| [[17/14]] | |||
| +19.497 | |||
| +32.895 | |||
|- | |||
| [[28/1]] | |||
| -19.529 | |||
| -32.948 | |||
|- | |||
| [[19/6]] | |||
| +19.660 | |||
| +33.169 | |||
|- | |||
| [[17/3]] | |||
| +19.826 | |||
| +33.450 | |||
|- | |||
| [[6/1]] | |||
| -19.858 | |||
| -33.503 | |||
|- | |||
| [[23/13]] | |||
| +19.862 | |||
| +33.511 | |||
|- | |||
| [[29/25]] | |||
| -19.865 | |||
| -33.516 | |||
|- | |||
| [[13/10]] | |||
| +19.955 | |||
| +33.667 | |||
|- | |||
| [[9/7]] | |||
| -20.186 | |||
| -34.058 | |||
|- | |||
| [[30/19]] | |||
| -20.231 | |||
| -34.134 | |||
|- | |||
| [[23/21]] | |||
| +20.320 | |||
| +34.283 | |||
|- | |||
| [[17/15]] | |||
| +20.398 | |||
| +34.414 | |||
|- | |||
| [[30/1]] | |||
| -20.429 | |||
| -34.468 | |||
|- | |||
| [[29/5]] | |||
| -20.437 | |||
| -34.481 | |||
|- | |||
| [[27/13]] | |||
| -20.644 | |||
| -34.830 | |||
|- | |||
| [[29/19]] | |||
| -20.811 | |||
| -35.111 | |||
|- | |||
| [[34/29]] | |||
| +20.977 | |||
| +35.392 | |||
|- | |||
| '''[[29/1]]''' | |||
| '''-21.009''' | |||
| '''-35.445''' | |||
|- | |||
| [[22/21]] | |||
| -21.266 | |||
| -35.879 | |||
|- | |||
| [[33/4]] | |||
| +21.536 | |||
| +36.334 | |||
|- | |||
| [[22/13]] | |||
| -21.724 | |||
| -36.651 | |||
|- | |||
| [[33/20]] | |||
| +22.107 | |||
| +37.299 | |||
|- | |||
| [[33/17]] | |||
| -22.167 | |||
| -37.399 | |||
|- | |||
| [[31/21]] | |||
| -22.273 | |||
| -37.577 | |||
|- | |||
| [[29/8]] | |||
| +22.725 | |||
| +38.340 | |||
|- | |||
| [[31/13]] | |||
| -22.730 | |||
| -38.350 | |||
|- | |||
| [[18/11]] | |||
| -22.797 | |||
| -38.462 | |||
|- | |||
| [[15/4]] | |||
| +23.304 | |||
| +39.318 | |||
|- | |||
| [[4/3]] | |||
| -23.876 | |||
| -40.283 | |||
|- | |||
| [[25/18]] | |||
| +23.994 | |||
| +40.481 | |||
|- | |||
| [[7/2]] | |||
| +24.205 | |||
| +40.838 | |||
|- | |||
| [[26/17]] | |||
| -24.319 | |||
| -41.030 | |||
|- | |||
| [[28/13]] | |||
| -24.334 | |||
| -41.055 | |||
|- | |||
| [[20/3]] | |||
| -24.448 | |||
| -41.248 | |||
|- | |||
| [[18/5]] | |||
| -24.565 | |||
| -41.446 | |||
|- | |||
| [[13/6]] | |||
| +24.663 | |||
| +41.610 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''+24.667''' | |||
| '''+41.618''' | |||
|- | |||
| [[34/23]] | |||
| -24.699 | |||
| -41.671 | |||
|- | |||
| [[10/7]] | |||
| -24.777 | |||
| -41.802 | |||
|- | |||
| [[23/19]] | |||
| +24.865 | |||
| +41.952 | |||
|- | |||
| [[19/18]] | |||
| +24.939 | |||
| +42.076 | |||
|- | |||
| [[17/9]] | |||
| +25.106 | |||
| +42.357 | |||
|- | |||
| [[18/1]] | |||
| -25.137 | |||
| -42.411 | |||
|- | |||
| [[30/13]] | |||
| -25.235 | |||
| -42.575 | |||
|- | |||
| [[23/5]] | |||
| +25.239 | |||
| +42.582 | |||
|- | |||
| [[29/21]] | |||
| -25.356 | |||
| -42.780 | |||
|- | |||
| [[27/7]] | |||
| -25.466 | |||
| -42.965 | |||
|- | |||
| [[31/8]] | |||
| +25.809 | |||
| +43.543 | |||
|- | |||
| [[25/23]] | |||
| -25.811 | |||
| -43.547 | |||
|- | |||
| [[29/13]] | |||
| -25.814 | |||
| -43.553 | |||
|- | |||
| [[22/7]] | |||
| -26.546 | |||
| -44.787 | |||
|- | |||
| [[11/4]] | |||
| +26.815 | |||
| +45.242 | |||
|- | |||
| [[23/11]] | |||
| +27.008 | |||
| +45.567 | |||
|- | |||
| [[20/11]] | |||
| -27.387 | |||
| -46.206 | |||
|- | |||
| [[31/7]] | |||
| -27.552 | |||
| -46.485 | |||
|- | |||
| [[27/8]] | |||
| +27.895 | |||
| +47.063 | |||
|- | |||
| [[29/24]] | |||
| +28.004 | |||
| +47.248 | |||
|- | |||
| [[25/4]] | |||
| +28.012 | |||
| +47.261 | |||
|- | |||
| [[5/4]] | |||
| +28.584 | |||
| +48.226 | |||
|- | |||
| [[19/4]] | |||
| +28.958 | |||
| +48.857 | |||
|- | |||
| [[17/2]] | |||
| +29.124 | |||
| +49.137 | |||
|- | |||
| [[4/1]] | |||
| -29.156 | |||
| -49.191 | |||
|- | |||
| [[7/6]] | |||
| +29.485 | |||
| +49.745 | |||
|- | |||
| [[20/19]] | |||
| -29.530 | |||
| -49.821 | |||
|- | |||
| [[23/14]] | |||
| +29.618 | |||
| +49.971 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/10]]'' | |||
| ''+29.696'' | |||
| ''+50.102'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''-29.728'' | |||
| ''-50.155'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''-29.942'' | |||
| ''-50.518'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/3]]'' | |||
| ''+29.947'' | |||
| ''+50.525'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/7]]'' | |||
| ''-30.056'' | |||
| ''-50.710'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''-30.385'' | |||
| ''-51.265'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/15]]'' | |||
| ''+30.519'' | |||
| ''+51.490'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/7]]'' | |||
| ''-30.636'' | |||
| ''-51.688'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''+31.088'' | |||
| ''+52.451'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/17]]'' | |||
| ''-31.465'' | |||
| ''-53.086'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''-32.095'' | |||
| ''-54.149'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/23]]'' | |||
| ''-32.288'' | |||
| ''-54.474'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/17]]'' | |||
| ''-32.471'' | |||
| ''-54.785'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''+33.174'' | |||
| ''+55.971'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/12]]'' | |||
| ''+33.292'' | |||
| ''+56.169'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+33.503'' | |||
| ''+56.525'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''-33.864'' | |||
| ''-57.134'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+33.961'' | |||
| ''+57.298'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+34.075'' | |||
| ''+57.490'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''-34.075'' | |||
| ''-57.490'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+34.237'' | |||
| ''+57.764'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/6]]'' | |||
| ''+34.404'' | |||
| ''+58.045'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''-34.435'' | |||
| ''-58.098'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/23]]'' | |||
| ''-34.440'' | |||
| ''-58.106'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-34.533'' | |||
| ''-58.262'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''-34.764'' | |||
| ''-58.653'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/17]]'' | |||
| ''-34.976'' | |||
| ''-59.010'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''+35.227'' | |||
| ''+59.433'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/17]]'' | |||
| ''-35.555'' | |||
| ''-59.987'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/8]]'' | |||
| ''+36.113'' | |||
| ''+60.929'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''+37.303'' | |||
| ''+62.936'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''+37.882'' | |||
| ''+63.914'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''-38.454'' | |||
| ''-64.878'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+38.783'' | |||
| ''+65.433'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''+39.241'' | |||
| ''+66.205'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/2]]'' | |||
| ''+39.245'' | |||
| ''+66.213'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-39.355'' | |||
| ''-66.398'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''-39.683'' | |||
| ''-66.953'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''+39.817'' | |||
| ''+67.178'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''+40.387'' | |||
| ''+68.139'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''-40.506'' | |||
| ''-68.341'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+41.393'' | |||
| ''+69.837'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/22]]'' | |||
| ''+41.586'' | |||
| ''+70.162'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''+42.473'' | |||
| ''+71.658'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+42.590'' | |||
| ''+71.856'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/23]]'' | |||
| ''-42.592'' | |||
| ''-71.860'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-43.162'' | |||
| ''-72.821'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+43.536'' | |||
| ''+73.452'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''+43.702'' | |||
| ''+73.733'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-43.734'' | |||
| ''-73.786'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''-44.063'' | |||
| ''-74.341'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''-44.196'' | |||
| ''-74.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-44.274'' | |||
| ''-74.697'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/6]]'' | |||
| ''+44.525'' | |||
| ''+75.121'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[30/23]]'' | |||
| ''-45.097'' | |||
| ''-76.085'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/23]]'' | |||
| ''-45.676'' | |||
| ''-77.063'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-46.673'' | |||
| ''-78.745'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-47.752'' | |||
| ''-80.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''+47.870'' | |||
| ''+80.764'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''+48.081'' | |||
| ''+81.121'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-48.442'' | |||
| ''-81.729'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''+48.539'' | |||
| ''+81.893'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''-48.815'' | |||
| ''-82.359'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/12]]'' | |||
| ''+48.982'' | |||
| ''+82.640'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''-49.013'' | |||
| ''-82.693'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''+49.804'' | |||
| ''+84.028'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/16]]'' | |||
| ''+50.691'' | |||
| ''+85.525'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/29]]'' | |||
| ''-51.881'' | |||
| ''-87.531'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''-52.460'' | |||
| ''-88.509'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''-53.032'' | |||
| ''-89.474'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''-53.361'' | |||
| ''-90.028'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''-53.819'' | |||
| ''-90.801'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''+53.823'' | |||
| ''+90.808'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''+54.395'' | |||
| ''+91.773'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''-54.964'' | |||
| ''-92.734'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-55.971'' | |||
| ''-94.432'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''-57.051'' | |||
| ''-96.254'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+57.168'' | |||
| ''+96.452'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-57.740'' | |||
| ''-97.416'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+58.114'' | |||
| ''+98.047'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+58.280'' | |||
| ''+98.328'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-58.312'' | |||
| ''-98.381'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''-58.640'' | |||
| ''-98.936'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''+59.103'' | |||
| ''+99.716'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''-62.330'' | |||
| ''-105.161'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+62.659'' | |||
| ''+105.716'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-63.117'' | |||
| ''-106.488'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-63.560'' | |||
| ''-107.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[33/32]]'' | |||
| ''+65.269'' | |||
| ''+110.120'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-67.038'' | |||
| ''-113.104'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-67.610'' | |||
| ''-114.069'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-67.939'' | |||
| ''-114.624'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+68.401'' | |||
| ''+115.404'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''-70.549'' | |||
| ''-119.027'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''-71.746'' | |||
| ''-121.047'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''-72.318'' | |||
| ''-122.012'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-72.692'' | |||
| ''-122.642'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+72.858'' | |||
| ''+122.923'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''-72.890'' | |||
| ''-122.976'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''-73.681'' | |||
| ''-124.311'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-77.237'' | |||
| ''-130.311'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''-77.695'' | |||
| ''-131.084'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''-82.517'' | |||
| ''-139.219'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+82.979'' | |||
| ''+139.999'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''-87.436'' | |||
| ''-147.518'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''-97.557'' | |||
| ''-164.594'' | |||
|} | |} | ||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] |
Revision as of 21:54, 12 August 2024
71 zeta peak index (abbreviated 71zpi), is the equal-step tuning system obtained from the 71st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 0.613581 | 12.986080 | 20edo | 1186.65961344942 | 6 | 6 |

Theory
71zpi marks the most prominent zeta peak index in the vicinity of 20edo. While 70zpi is the nearest peak to 20edo and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of 32edt, a no-2s zeta peak EDT (consistent in the no-2s 21-throdd-limit), but with less extreme stretch than the no-2s peak at 59.271105 cents.
71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of 20edo.
The nearest zeta peaks to 71zpi that surpass its strength are 65zpi and 75zpi.
71zpi is distinguished by its extensive EDO-deviation and substantial zeta strength, qualifying it as a strong candidate for no-octave tuning systems. It is noteworthy that only 19zpi exhibits both a greater octave error and stronger zeta height and integral than 71zpi, although 71zpi still has a more pronounced zeta gap. Other notable zeta peak indices in this category include 61zpi, 84zpi, 110zpi, 137zpi, 151zpi, 222zpi, and 273zpi, each demonstrating characteristics that make them suitable for similar applications.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -13.3 | -3.3 | -26.7 | +2.3 | -16.6 | +13.2 | +19.3 | -6.6 | -11.0 | +2.0 | +29.4 | +9.4 | -0.2 | -1.0 | +6.0 |
Relative (%) | -22.5 | -5.6 | -45.0 | +3.9 | -28.0 | +22.2 | +32.5 | -11.1 | -18.5 | +3.4 | +49.5 | +15.9 | -0.3 | -1.6 | +10.1 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.7 | -19.9 | +5.1 | -24.3 | +9.9 | -11.3 | -29.0 | +16.0 | +4.7 | -3.9 | -9.9 | -13.5 | -14.9 | -14.3 | -11.7 | -7.4 | -1.3 |
Relative (%) | +33.2 | -33.6 | +8.6 | -41.0 | +16.6 | -19.1 | -48.8 | +27.0 | +7.9 | -6.6 | -16.7 | -22.8 | -25.2 | -24.1 | -19.8 | -12.4 | -2.2 | |
Step | 83 | 84 | 86 | 87 | 89 | 90 | 91 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
Intervals
There are multiple ways to approach notation. The simplest method is to use the notations from 20edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. If maintaining accurate step compression in notation software is important, consider using the ups and downs notation from 182edo at every 9-degree step. With this method, the tonal difference will be less than 1 cent up to the 86th harmonic.
JI ratios are comprised of 33-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 30 steps Limma = 16 steps Apotome = 14 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.333 | 33/32, 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | v7m2 | 9 |
2 | 118.666 | 19/18, 18/17, 17/16, 33/31, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | ^^m2 | 18 |
3 | 177.999 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vvvM2 | 27 |
4 | 237.332 | 26/23, 17/15, 25/22, 33/29, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6 | ^6M2 | 36 |
5 | 296.665 | 27/23, 20/17, 33/28, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 45 |
6 | 355.998 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | v6M3 | 54 |
7 | 415.331 | 5/4, 29/23, 24/19, 19/15, 33/26, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^^M3 | 63 |
8 | 474.664 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 33/25, 4/3 | v44 | 72 |
9 | 533.997 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21, 18/13 | ^54 | 81 |
10 | 593.330 | 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | A4 | 90 |
11 | 652.663 | 33/23, 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ~5 | 99 |
12 | 711.996 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^^5 | 108 |
13 | 771.329 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17 | v5m6 | 117 |
14 | 830.662 | 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^4m6 | 126 |
15 | 889.995 | 28/17, 33/20, 5/3, 32/19, 27/16, 22/13, 17/10 | vM6 | 135 |
16 | 949.328 | 29/17, 12/7, 31/18, 19/11, 26/15, 33/19, 7/4 | v6A6, ^6d7 | 144 |
17 | 1008.661 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | ^m7 | 153 |
18 | 1067.994 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | v4M7 | 162 |
19 | 1127.327 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16, 33/17 | ^5M7 | 171 |
20 | 1186.660 | 2/1 | vv1 +1 oct | 180 |
21 | 1245.993 | 33/16, 31/15, 29/14, 27/13, 25/12 | ^71 +1 oct | 189 |
22 | 1305.326 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | m2 +1 oct | 198 |
23 | 1364.659 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | v5M2 +1 oct | 207 |
24 | 1423.992 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^4M2 +1 oct | 216 |
25 | 1483.325 | 7/3, 33/14, 26/11, 19/8, 31/13 | vvvm3 +1 oct | 225 |
26 | 1542.657 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^6m3 +1 oct | 234 |
27 | 1601.990 | 5/2, 33/13, 28/11, 23/9 | ^M3 +1 oct | 243 |
28 | 1661.323 | 18/7, 31/12, 13/5, 21/8, 29/11 | v64 +1 oct | 252 |
29 | 1720.656 | 8/3, 27/10, 19/7, 30/11 | ^^^4 +1 oct | 261 |
30 | 1779.989 | 11/4, 25/9, 14/5, 31/11, 17/6 | vvA4 +1 oct | 270 |
31 | 1839.322 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^5d5 +1 oct | 279 |
32 | 1898.655 | 3/1 | P5 +1 oct | 288 |
33 | 1957.988 | 31/10, 28/9, 25/8, 22/7 | v7m6 +1 oct | 297 |
34 | 2017.321 | 19/6, 16/5, 29/9, 13/4 | ^^m6 +1 oct | 306 |
35 | 2076.654 | 23/7, 33/10, 10/3, 27/8 | vvvM6 +1 oct | 315 |
36 | 2135.987 | 17/5, 24/7, 31/9 | ^6M6 +1 oct | 324 |
37 | 2195.320 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 333 |
38 | 2254.653 | 29/8, 11/3, 26/7 | v6M7 +1 oct | 342 |
39 | 2313.986 | 15/4, 19/5, 23/6, 27/7 | ^^^M7 +1 oct | 351 |
40 | 2373.319 | 31/8, 4/1 | v41 +2 oct | 360 |
41 | 2432.652 | 33/8, 29/7 | ^51 +2 oct | 369 |
42 | 2491.985 | 25/6, 21/5, 17/4, 30/7 | vvm2 +2 oct | 378 |
43 | 2551.318 | 13/3, 22/5, 31/7 | ~2 +2 oct | 387 |
44 | 2610.651 | 9/2, 32/7 | ^^M2 +2 oct | 396 |
45 | 2669.984 | 23/5, 14/3, 33/7, 19/4 | v5m3 +2 oct | 405 |
46 | 2729.317 | 24/5, 29/6 | ^4m3 +2 oct | 414 |
47 | 2788.650 | 5/1 | vM3 +2 oct | 423 |
48 | 2847.983 | 31/6, 26/5, 21/4 | v6A3 +2 oct, ^6d4 +2 oct | 432 |
49 | 2907.316 | 16/3, 27/5 | ^4 +2 oct | 441 |
50 | 2966.649 | 11/2, 28/5 | v4A4 +2 oct | 450 |
51 | 3025.982 | 17/3, 23/4, 29/5 | ^^^d5 +2 oct | 459 |
52 | 3085.315 | 6/1 | vv5 +2 oct | 468 |
53 | 3144.648 | 31/5, 25/4 | ^75 +2 oct | 477 |
54 | 3203.981 | 19/3, 32/5 | m6 +2 oct | 486 |
55 | 3263.314 | 13/2, 33/5, 20/3 | v5M6 +2 oct | 495 |
56 | 3322.647 | 27/4 | ^4M6 +2 oct | 504 |
57 | 3381.980 | 7/1 | vvvm7 +2 oct | 513 |
58 | 3441.313 | 29/4, 22/3 | ^6m7 +2 oct | 522 |
59 | 3500.646 | 15/2, 23/3 | ^M7 +2 oct | 531 |
60 | 3559.979 | 31/4 | v61 +3 oct | 540 |
61 | 3619.312 | 8/1 | ^^^1 +3 oct | 549 |
62 | 3678.645 | 33/4, 25/3, 17/2 | v4m2 +3 oct | 558 |
63 | 3737.978 | 26/3 | ^5m2 +3 oct | 567 |
64 | 3797.311 | 9/1 | M2 +3 oct | 576 |
65 | 3856.644 | 28/3 | v7m3 +3 oct | 585 |
66 | 3915.977 | 19/2, 29/3 | ^^m3 +3 oct | 594 |
67 | 3975.310 | 10/1 | vvvM3 +3 oct | 603 |
68 | 4034.643 | 31/3 | ^6M3 +3 oct | 612 |
69 | 4093.976 | 21/2, 32/3 | v4 +3 oct | 621 |
70 | 4153.309 | 11/1 | v6A4 +3 oct | 630 |
71 | 4212.642 | 23/2 | ^d5 +3 oct | 639 |
72 | 4271.975 | v45 +3 oct | 648 | |
73 | 4331.308 | 12/1 | ^55 +3 oct | 657 |
74 | 4390.641 | 25/2 | vvm6 +3 oct | 666 |
75 | 4449.974 | 13/1 | ~6 +3 oct | 675 |
76 | 4509.307 | 27/2 | ^^M6 +3 oct | 684 |
77 | 4568.640 | 14/1 | v5m7 +3 oct | 693 |
78 | 4627.972 | 29/2 | ^4m7 +3 oct | 702 |
79 | 4687.305 | 15/1 | vM7 +3 oct | 711 |
80 | 4746.638 | 31/2 | v6A7 +3 oct, ^6d1 +4 oct | 720 |
81 | 4805.971 | 16/1 | ^1 +4 oct | 729 |
82 | 4865.304 | 33/2 | v6m2 +4 oct | 738 |
83 | 4924.637 | 17/1 | ^^^m2 +4 oct | 747 |
84 | 4983.970 | 18/1 | vvM2 +4 oct | 756 |
85 | 5043.303 | ^7M2 +4 oct | 765 | |
86 | 5102.636 | 19/1 | m3 +4 oct | 774 |
87 | 5161.969 | 20/1 | v5M3 +4 oct | 783 |
88 | 5221.302 | ^4M3 +4 oct | 792 | |
89 | 5280.635 | 21/1 | vvv4 +4 oct | 801 |
90 | 5339.968 | 22/1 | ^64 +4 oct | 810 |
91 | 5399.301 | 23/1 | ^A4 +4 oct, vd5 +4 oct | 819 |
92 | 5458.634 | v65 +4 oct | 828 | |
93 | 5517.967 | 24/1 | ^^^5 +4 oct | 837 |
94 | 5577.300 | 25/1 | v4m6 +4 oct | 846 |
95 | 5636.633 | 26/1 | ^5m6 +4 oct | 855 |
96 | 5695.966 | 27/1 | M6 +4 oct | 864 |
97 | 5755.299 | 28/1 | v7m7 +4 oct | 873 |
98 | 5814.632 | 29/1 | ^^m7 +4 oct | 882 |
99 | 5873.965 | 30/1 | vvvM7 +4 oct | 891 |
100 | 5933.298 | 31/1 | ^6M7 +4 oct | 900 |
101 | 5992.631 | 32/1 | v1 +5 oct | 909 |
102 | 6051.964 | 33/1 | v6A1 +5 oct, ^6d2 +5 oct | 918 |
Approximation to JI
Interval mappings
The following tables show how 33-integer-limit intervals are represented in 71zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | -0.186 | -0.314 |
11/5 | -0.346 | -0.583 |
17/8 | +0.370 | +0.624 |
31/22 | -0.388 | -0.654 |
21/13 | +0.408 | +0.688 |
25/19 | -0.451 | -0.759 |
26/3 | -0.595 | -1.003 |
30/29 | +0.641 | +1.081 |
31/10 | -0.733 | -1.236 |
32/9 | -0.770 | -1.297 |
15/14 | -0.777 | -1.309 |
19/16 | -0.848 | -1.429 |
15/1 | -0.963 | -1.623 |
23/12 | +1.007 | +1.698 |
27/10 | +1.105 | +1.863 |
33/14 | -1.123 | -1.892 |
25/16 | -1.299 | -2.189 |
33/1 | -1.309 | -2.206 |
29/28 | -1.418 | -2.390 |
27/22 | +1.451 | +2.445 |
31/2 | +1.603 | +2.702 |
29/2 | -1.605 | -2.705 |
29/6 | +1.695 | +2.857 |
31/28 | +1.789 | +3.016 |
31/27 | -1.839 | -3.099 |
11/1 | +1.991 | +3.355 |
14/11 | -2.177 | -3.669 |
23/4 | -2.292 | -3.864 |
5/1 | +2.336 | +3.938 |
14/5 | -2.523 | -4.252 |
32/27 | +2.530 | +4.264 |
31/30 | +2.566 | +4.325 |
33/26 | +2.586 | +4.358 |
25/11 | +2.682 | +4.520 |
26/9 | +2.705 | +4.559 |
19/5 | +2.787 | +4.697 |
24/7 | +2.858 | +4.817 |
26/15 | -2.931 | -4.940 |
15/11 | -2.954 | -4.979 |
14/3 | +3.113 | +5.247 |
19/11 | +3.133 | +5.280 |
31/29 | +3.208 | +5.406 |
3/1 | -3.300 | -5.561 |
27/2 | +3.442 | +5.800 |
16/13 | -3.474 | -5.856 |
29/22 | -3.595 | -6.060 |
28/27 | -3.628 | -6.115 |
16/5 | +3.635 | +6.127 |
33/5 | -3.645 | -6.144 |
24/17 | -3.670 | -6.185 |
13/7 | -3.708 | -6.250 |
21/16 | +3.883 | +6.544 |
26/1 | -3.894 | -6.564 |
29/10 | -3.941 | -6.642 |
16/11 | +3.981 | +6.709 |
32/3 | -4.069 | -6.858 |
19/13 | -4.323 | -7.285 |
32/31 | +4.369 | +7.363 |
10/9 | -4.405 | -7.424 |
23/20 | -4.629 | -7.801 |
25/1 | +4.673 | +7.875 |
21/19 | +4.731 | +7.974 |
22/9 | -4.750 | -8.006 |
25/13 | -4.773 | -8.045 |
25/14 | +4.859 | +8.190 |
31/6 | +4.903 | +8.263 |
29/18 | +4.995 | +8.418 |
29/27 | -5.046 | -8.505 |
19/1 | +5.123 | +8.635 |
31/9 | -5.138 | -8.660 |
25/21 | -5.182 | -8.733 |
11/3 | +5.290 | +8.916 |
19/14 | +5.310 | +8.949 |
5/3 | +5.636 | +9.499 |
26/11 | -5.885 | -9.919 |
16/1 | +5.971 | +10.064 |
33/25 | -5.982 | -10.082 |
27/26 | -6.004 | -10.120 |
33/32 | +6.060 | +10.214 |
19/15 | +6.087 | +10.258 |
8/7 | +6.158 | +10.378 |
26/5 | -6.231 | -10.502 |
32/15 | -6.406 | -10.796 |
14/9 | +6.413 | +10.808 |
33/19 | -6.432 | -10.841 |
17/7 | +6.528 | +11.002 |
24/13 | +6.566 | +11.067 |
9/1 | -6.599 | -11.122 |
9/2 | +6.741 | +11.362 |
28/9 | -6.928 | -11.676 |
16/15 | +6.935 | +11.688 |
13/5 | +7.110 | +11.982 |
16/7 | -7.183 | -12.106 |
33/16 | -7.280 | -12.270 |
32/1 | -7.369 | -12.420 |
13/11 | +7.455 | +12.565 |
21/5 | +7.518 | +12.671 |
32/29 | +7.576 | +12.769 |
10/3 | -7.704 | -12.985 |
31/26 | -7.843 | -13.219 |
21/11 | +7.864 | +13.253 |
25/3 | +7.972 | +13.437 |
19/7 | -8.031 | -13.535 |
22/3 | -8.050 | -13.568 |
31/18 | +8.202 | +13.824 |
29/9 | -8.346 | -14.066 |
19/3 | +8.423 | +14.196 |
31/3 | -8.438 | -14.221 |
25/7 | -8.481 | -14.294 |
26/25 | -8.567 | -14.439 |
11/9 | +8.590 | +14.478 |
9/5 | -8.936 | -15.060 |
26/19 | -9.018 | -15.199 |
23/18 | -9.033 | -15.225 |
16/3 | +9.271 | +15.625 |
32/11 | -9.360 | -15.775 |
29/20 | +9.399 | +15.842 |
13/1 | +9.446 | +15.920 |
21/8 | -9.457 | -15.940 |
14/13 | -9.632 | -16.234 |
17/12 | -9.671 | -16.299 |
33/10 | +9.695 | +16.340 |
32/5 | -9.705 | -16.357 |
27/14 | -9.712 | -16.369 |
21/17 | -9.828 | -16.563 |
21/1 | +9.854 | +16.609 |
13/8 | -9.866 | -16.628 |
27/1 | -9.899 | -16.684 |
3/2 | +10.041 | +16.923 |
28/3 | -10.227 | -17.237 |
17/13 | +10.236 | +17.252 |
22/15 | -10.386 | -17.505 |
15/13 | -10.409 | -17.544 |
33/31 | +10.429 | +17.576 |
23/17 | +10.678 | +17.997 |
33/13 | -10.755 | -18.126 |
31/15 | -10.774 | -18.159 |
7/5 | +10.818 | +18.232 |
24/19 | +10.889 | +18.352 |
10/1 | -11.004 | -18.546 |
23/8 | +11.048 | +18.620 |
29/26 | -11.051 | -18.625 |
11/7 | -11.163 | -18.815 |
25/9 | +11.272 | +18.998 |
25/24 | -11.339 | -19.112 |
22/1 | -11.350 | -19.129 |
31/14 | -11.551 | -19.468 |
29/3 | -11.645 | -19.627 |
19/9 | +11.723 | +19.757 |
29/4 | +11.736 | +19.779 |
31/1 | -11.738 | -19.782 |
27/11 | -11.890 | -20.039 |
33/2 | +12.031 | +20.278 |
32/25 | -12.042 | -20.295 |
33/28 | +12.218 | +20.592 |
27/5 | -12.235 | -20.621 |
23/6 | -12.333 | -20.786 |
15/2 | +12.377 | +20.860 |
32/19 | -12.492 | -21.055 |
28/15 | -12.564 | -21.175 |
16/9 | +12.571 | +21.187 |
31/20 | +12.607 | +21.248 |
13/3 | +12.746 | +21.481 |
17/4 | -12.970 | -21.860 |
11/10 | +12.995 | +21.901 |
7/1 | +13.154 | +22.170 |
2/1 | -13.340 | -22.484 |
28/1 | -13.527 | -22.798 |
33/29 | +13.636 | +22.982 |
24/5 | +13.676 | +23.049 |
22/5 | -13.686 | -23.067 |
17/16 | +13.711 | +23.108 |
31/11 | -13.728 | -23.138 |
26/21 | -13.749 | -23.172 |
29/15 | -13.982 | -23.565 |
24/11 | +14.021 | +23.632 |
29/23 | +14.028 | +23.643 |
31/5 | -14.074 | -23.720 |
15/7 | -14.117 | -23.793 |
19/8 | -14.188 | -23.913 |
30/1 | -14.304 | -24.107 |
24/23 | -14.348 | -24.182 |
27/20 | +14.446 | +24.347 |
33/7 | -14.463 | -24.376 |
19/17 | -14.559 | -24.537 |
27/25 | -14.572 | -24.559 |
25/8 | -14.639 | -24.673 |
30/23 | +14.669 | +24.724 |
29/14 | -14.759 | -24.874 |
31/4 | +14.943 | +25.185 |
29/1 | -14.945 | -25.189 |
25/17 | -15.009 | -25.297 |
27/19 | -15.022 | -25.318 |
29/12 | +15.035 | +25.341 |
20/17 | +15.307 | +25.798 |
11/2 | +15.331 | +25.839 |
28/23 | +15.446 | +26.033 |
28/11 | -15.517 | -26.153 |
23/2 | -15.633 | -26.347 |
5/2 | +15.677 | +26.422 |
28/5 | -15.863 | -26.736 |
27/16 | -15.870 | -26.748 |
24/1 | +16.012 | +26.987 |
25/22 | +16.022 | +27.004 |
13/9 | +16.045 | +27.043 |
19/10 | +16.127 | +27.181 |
12/7 | +16.199 | +27.301 |
30/11 | -16.294 | -27.463 |
31/25 | -16.410 | -27.658 |
7/3 | +16.454 | +27.731 |
22/19 | -16.473 | -27.764 |
6/1 | -16.640 | -28.045 |
27/4 | +16.782 | +28.284 |
32/13 | -16.815 | -28.340 |
31/19 | -16.861 | -28.417 |
29/11 | -16.936 | -28.544 |
8/5 | +16.975 | +28.610 |
26/7 | -17.048 | -28.734 |
23/7 | +17.206 | +28.999 |
32/21 | -17.223 | -29.028 |
31/23 | +17.236 | +29.049 |
29/5 | -17.281 | -29.126 |
11/8 | -17.321 | -29.193 |
17/5 | +17.346 | +29.234 |
23/22 | -17.623 | -29.703 |
17/11 | +17.691 | +29.817 |
31/16 | -17.709 | -29.847 |
20/9 | -17.745 | -29.908 |
23/10 | -17.969 | -30.285 |
25/2 | +18.013 | +30.359 |
28/25 | -18.200 | -30.674 |
31/12 | +18.243 | +30.747 |
19/2 | +18.464 | +31.119 |
11/6 | +18.631 | +31.400 |
28/19 | -18.650 | -31.433 |
6/5 | -18.976 | -31.983 |
27/23 | +19.074 | +32.148 |
8/1 | +19.312 | +32.548 |
27/13 | -19.345 | -32.604 |
30/19 | -19.427 | -32.742 |
7/4 | -19.498 | -32.862 |
29/25 | -19.618 | -33.064 |
17/1 | +19.682 | +33.172 |
18/17 | +19.711 | +33.222 |
9/7 | -19.753 | -33.292 |
17/14 | +19.868 | +33.486 |
13/12 | -19.907 | -33.551 |
18/1 | -19.940 | -33.606 |
29/19 | -20.068 | -33.823 |
9/4 | +20.082 | +33.845 |
15/8 | -20.275 | -34.172 |
13/10 | +20.450 | +34.466 |
23/21 | +20.506 | +34.560 |
32/7 | -20.523 | -34.589 |
33/8 | -20.621 | -34.754 |
17/15 | +20.645 | +34.796 |
22/13 | -20.796 | -35.049 |
21/10 | +20.858 | +35.155 |
23/13 | +20.914 | +35.249 |
29/16 | -20.917 | -35.253 |
33/17 | -20.991 | -35.378 |
20/3 | -21.045 | -35.469 |
31/13 | -21.183 | -35.703 |
22/21 | -21.204 | -35.737 |
25/6 | +21.313 | +35.921 |
31/21 | -21.592 | -36.391 |
32/23 | +21.604 | +36.412 |
19/6 | +21.763 | +36.680 |
20/7 | +21.835 | +36.800 |
18/11 | -21.930 | -36.961 |
18/5 | -22.276 | -37.544 |
23/9 | -22.374 | -37.709 |
8/3 | +22.611 | +38.109 |
13/2 | +22.786 | +38.404 |
21/4 | -22.798 | -38.424 |
28/13 | -22.973 | -38.718 |
17/3 | +22.982 | +38.733 |
17/6 | -23.011 | -38.783 |
33/20 | +23.035 | +38.824 |
27/7 | -23.053 | -38.853 |
21/2 | +23.195 | +39.093 |
13/4 | -23.206 | -39.112 |
4/3 | -23.381 | -39.407 |
26/17 | -23.576 | -39.736 |
30/13 | -23.750 | -40.028 |
10/7 | -24.158 | -40.716 |
19/12 | -24.229 | -40.836 |
20/1 | -24.344 | -41.030 |
23/16 | +24.388 | +41.104 |
29/13 | -24.391 | -41.109 |
22/7 | -24.504 | -41.299 |
25/18 | +24.612 | +41.482 |
25/12 | -24.680 | -41.595 |
29/17 | +24.706 | +41.639 |
29/21 | -24.799 | -41.797 |
31/7 | -24.891 | -41.952 |
19/18 | +25.063 | +42.241 |
29/8 | +25.076 | +42.263 |
26/23 | +25.079 | +42.268 |
21/20 | -25.134 | -42.361 |
23/19 | +25.237 | +42.534 |
30/17 | +25.347 | +42.721 |
33/4 | +25.372 | +42.762 |
20/13 | +25.543 | +43.050 |
23/3 | -25.673 | -43.270 |
25/23 | -25.687 | -43.293 |
15/4 | +25.718 | +43.344 |
9/8 | -25.911 | -43.671 |
13/6 | +26.086 | +43.965 |
28/17 | +26.124 | +44.030 |
18/7 | +26.239 | +44.224 |
17/9 | +26.281 | +44.294 |
17/2 | -26.311 | -44.344 |
20/11 | -26.335 | -44.385 |
7/2 | +26.494 | +44.654 |
4/1 | -26.681 | -44.968 |
12/5 | +27.016 | +45.533 |
32/17 | -27.051 | -45.592 |
12/11 | +27.362 | +46.116 |
30/7 | -27.458 | -46.277 |
19/4 | -27.529 | -46.397 |
33/23 | +27.664 | +46.625 |
31/24 | -27.750 | -46.769 |
31/17 | +27.913 | +47.045 |
25/4 | -27.979 | -47.157 |
23/15 | -28.010 | -47.208 |
23/5 | +28.023 | +47.231 |
29/7 | -28.099 | -47.358 |
31/8 | +28.284 | +47.669 |
22/17 | +28.301 | +47.699 |
23/11 | +28.369 | +47.813 |
29/24 | +28.376 | +47.824 |
17/10 | -28.647 | -48.282 |
11/4 | +28.671 | +48.323 |
23/14 | -28.787 | -48.517 |
23/1 | -28.973 | -48.831 |
5/4 | +29.017 | +48.906 |
27/8 | -29.211 | -49.232 |
12/1 | +29.353 | +49.471 |
18/13 | -29.386 | -49.526 |
20/19 | -29.468 | -49.665 |
7/6 | -29.539 | -49.785 |
27/17 | -29.581 | -49.856 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | -0.186 | -0.314 |
11/5 | -0.346 | -0.583 |
31/22 | -0.388 | -0.654 |
21/13 | +0.408 | +0.688 |
25/19 | -0.451 | -0.759 |
26/3 | -0.595 | -1.003 |
30/29 | +0.641 | +1.081 |
31/10 | -0.733 | -1.236 |
15/14 | -0.777 | -1.309 |
15/1 | -0.963 | -1.623 |
23/12 | +1.007 | +1.698 |
27/10 | +1.105 | +1.863 |
33/14 | -1.123 | -1.892 |
33/1 | -1.309 | -2.206 |
29/28 | -1.418 | -2.390 |
27/22 | +1.451 | +2.445 |
31/2 | +1.603 | +2.702 |
29/2 | -1.605 | -2.705 |
29/6 | +1.695 | +2.857 |
31/28 | +1.789 | +3.016 |
31/27 | -1.839 | -3.099 |
11/1 | +1.991 | +3.355 |
14/11 | -2.177 | -3.669 |
23/4 | -2.292 | -3.864 |
5/1 | +2.336 | +3.938 |
14/5 | -2.523 | -4.252 |
31/30 | +2.566 | +4.325 |
33/26 | +2.586 | +4.358 |
25/11 | +2.682 | +4.520 |
26/9 | +2.705 | +4.559 |
19/5 | +2.787 | +4.697 |
26/15 | -2.931 | -4.940 |
15/11 | -2.954 | -4.979 |
14/3 | +3.113 | +5.247 |
19/11 | +3.133 | +5.280 |
31/29 | +3.208 | +5.406 |
3/1 | -3.300 | -5.561 |
27/2 | +3.442 | +5.800 |
29/22 | -3.595 | -6.060 |
28/27 | -3.628 | -6.115 |
33/5 | -3.645 | -6.144 |
13/7 | -3.708 | -6.250 |
26/1 | -3.894 | -6.564 |
29/10 | -3.941 | -6.642 |
19/13 | -4.323 | -7.285 |
10/9 | -4.405 | -7.424 |
23/20 | -4.629 | -7.801 |
25/1 | +4.673 | +7.875 |
21/19 | +4.731 | +7.974 |
22/9 | -4.750 | -8.006 |
25/13 | -4.773 | -8.045 |
25/14 | +4.859 | +8.190 |
31/6 | +4.903 | +8.263 |
29/18 | +4.995 | +8.418 |
29/27 | -5.046 | -8.505 |
19/1 | +5.123 | +8.635 |
31/9 | -5.138 | -8.660 |
25/21 | -5.182 | -8.733 |
11/3 | +5.290 | +8.916 |
19/14 | +5.310 | +8.949 |
5/3 | +5.636 | +9.499 |
26/11 | -5.885 | -9.919 |
33/25 | -5.982 | -10.082 |
27/26 | -6.004 | -10.120 |
19/15 | +6.087 | +10.258 |
26/5 | -6.231 | -10.502 |
14/9 | +6.413 | +10.808 |
33/19 | -6.432 | -10.841 |
17/7 | +6.528 | +11.002 |
9/1 | -6.599 | -11.122 |
9/2 | +6.741 | +11.362 |
28/9 | -6.928 | -11.676 |
13/5 | +7.110 | +11.982 |
13/11 | +7.455 | +12.565 |
21/5 | +7.518 | +12.671 |
10/3 | -7.704 | -12.985 |
31/26 | -7.843 | -13.219 |
21/11 | +7.864 | +13.253 |
25/3 | +7.972 | +13.437 |
19/7 | -8.031 | -13.535 |
22/3 | -8.050 | -13.568 |
31/18 | +8.202 | +13.824 |
29/9 | -8.346 | -14.066 |
19/3 | +8.423 | +14.196 |
31/3 | -8.438 | -14.221 |
25/7 | -8.481 | -14.294 |
26/25 | -8.567 | -14.439 |
11/9 | +8.590 | +14.478 |
9/5 | -8.936 | -15.060 |
26/19 | -9.018 | -15.199 |
23/18 | -9.033 | -15.225 |
29/20 | +9.399 | +15.842 |
13/1 | +9.446 | +15.920 |
14/13 | -9.632 | -16.234 |
33/10 | +9.695 | +16.340 |
27/14 | -9.712 | -16.369 |
21/17 | -9.828 | -16.563 |
21/1 | +9.854 | +16.609 |
27/1 | -9.899 | -16.684 |
3/2 | +10.041 | +16.923 |
28/3 | -10.227 | -17.237 |
17/13 | +10.236 | +17.252 |
22/15 | -10.386 | -17.505 |
15/13 | -10.409 | -17.544 |
33/31 | +10.429 | +17.576 |
33/13 | -10.755 | -18.126 |
31/15 | -10.774 | -18.159 |
7/5 | +10.818 | +18.232 |
10/1 | -11.004 | -18.546 |
23/8 | +11.048 | +18.620 |
29/26 | -11.051 | -18.625 |
11/7 | -11.163 | -18.815 |
25/9 | +11.272 | +18.998 |
22/1 | -11.350 | -19.129 |
31/14 | -11.551 | -19.468 |
29/3 | -11.645 | -19.627 |
19/9 | +11.723 | +19.757 |
29/4 | +11.736 | +19.779 |
31/1 | -11.738 | -19.782 |
27/11 | -11.890 | -20.039 |
33/2 | +12.031 | +20.278 |
33/28 | +12.218 | +20.592 |
27/5 | -12.235 | -20.621 |
23/6 | -12.333 | -20.786 |
15/2 | +12.377 | +20.860 |
28/15 | -12.564 | -21.175 |
31/20 | +12.607 | +21.248 |
13/3 | +12.746 | +21.481 |
11/10 | +12.995 | +21.901 |
7/1 | +13.154 | +22.170 |
2/1 | -13.340 | -22.484 |
28/1 | -13.527 | -22.798 |
33/29 | +13.636 | +22.982 |
22/5 | -13.686 | -23.067 |
31/11 | -13.728 | -23.138 |
26/21 | -13.749 | -23.172 |
29/15 | -13.982 | -23.565 |
29/23 | +14.028 | +23.643 |
31/5 | -14.074 | -23.720 |
15/7 | -14.117 | -23.793 |
30/1 | -14.304 | -24.107 |
24/23 | -14.348 | -24.182 |
27/20 | +14.446 | +24.347 |
33/7 | -14.463 | -24.376 |
19/17 | -14.559 | -24.537 |
27/25 | -14.572 | -24.559 |
30/23 | +14.669 | +24.724 |
29/14 | -14.759 | -24.874 |
31/4 | +14.943 | +25.185 |
29/1 | -14.945 | -25.189 |
25/17 | -15.009 | -25.297 |
27/19 | -15.022 | -25.318 |
29/12 | +15.035 | +25.341 |
11/2 | +15.331 | +25.839 |
28/23 | +15.446 | +26.033 |
28/11 | -15.517 | -26.153 |
23/2 | -15.633 | -26.347 |
5/2 | +15.677 | +26.422 |
28/5 | -15.863 | -26.736 |
25/22 | +16.022 | +27.004 |
13/9 | +16.045 | +27.043 |
19/10 | +16.127 | +27.181 |
30/11 | -16.294 | -27.463 |
31/25 | -16.410 | -27.658 |
7/3 | +16.454 | +27.731 |
22/19 | -16.473 | -27.764 |
6/1 | -16.640 | -28.045 |
27/4 | +16.782 | +28.284 |
31/19 | -16.861 | -28.417 |
29/11 | -16.936 | -28.544 |
26/7 | -17.048 | -28.734 |
31/23 | +17.236 | +29.049 |
29/5 | -17.281 | -29.126 |
17/5 | +17.346 | +29.234 |
23/22 | -17.623 | -29.703 |
17/11 | +17.691 | +29.817 |
20/9 | -17.745 | -29.908 |
23/10 | -17.969 | -30.285 |
25/2 | +18.013 | +30.359 |
28/25 | -18.200 | -30.674 |
31/12 | +18.243 | +30.747 |
19/2 | +18.464 | +31.119 |
11/6 | +18.631 | +31.400 |
28/19 | -18.650 | -31.433 |
6/5 | -18.976 | -31.983 |
27/23 | +19.074 | +32.148 |
27/13 | -19.345 | -32.604 |
30/19 | -19.427 | -32.742 |
29/25 | -19.618 | -33.064 |
17/1 | +19.682 | +33.172 |
9/7 | -19.753 | -33.292 |
17/14 | +19.868 | +33.486 |
18/1 | -19.940 | -33.606 |
29/19 | -20.068 | -33.823 |
9/4 | +20.082 | +33.845 |
13/10 | +20.450 | +34.466 |
17/15 | +20.645 | +34.796 |
22/13 | -20.796 | -35.049 |
21/10 | +20.858 | +35.155 |
33/17 | -20.991 | -35.378 |
20/3 | -21.045 | -35.469 |
31/13 | -21.183 | -35.703 |
22/21 | -21.204 | -35.737 |
25/6 | +21.313 | +35.921 |
31/21 | -21.592 | -36.391 |
19/6 | +21.763 | +36.680 |
18/11 | -21.930 | -36.961 |
18/5 | -22.276 | -37.544 |
23/9 | -22.374 | -37.709 |
13/2 | +22.786 | +38.404 |
28/13 | -22.973 | -38.718 |
17/3 | +22.982 | +38.733 |
33/20 | +23.035 | +38.824 |
27/7 | -23.053 | -38.853 |
21/2 | +23.195 | +39.093 |
4/3 | -23.381 | -39.407 |
26/17 | -23.576 | -39.736 |
30/13 | -23.750 | -40.028 |
10/7 | -24.158 | -40.716 |
20/1 | -24.344 | -41.030 |
23/16 | +24.388 | +41.104 |
29/13 | -24.391 | -41.109 |
22/7 | -24.504 | -41.299 |
25/18 | +24.612 | +41.482 |
29/21 | -24.799 | -41.797 |
31/7 | -24.891 | -41.952 |
19/18 | +25.063 | +42.241 |
29/8 | +25.076 | +42.263 |
26/23 | +25.079 | +42.268 |
33/4 | +25.372 | +42.762 |
23/3 | -25.673 | -43.270 |
15/4 | +25.718 | +43.344 |
13/6 | +26.086 | +43.965 |
17/9 | +26.281 | +44.294 |
20/11 | -26.335 | -44.385 |
7/2 | +26.494 | +44.654 |
4/1 | -26.681 | -44.968 |
30/7 | -27.458 | -46.277 |
33/23 | +27.664 | +46.625 |
23/15 | -28.010 | -47.208 |
29/7 | -28.099 | -47.358 |
31/8 | +28.284 | +47.669 |
29/24 | +28.376 | +47.824 |
11/4 | +28.671 | +48.323 |
23/14 | -28.787 | -48.517 |
23/1 | -28.973 | -48.831 |
5/4 | +29.017 | +48.906 |
18/13 | -29.386 | -49.526 |
20/19 | -29.468 | -49.665 |
27/17 | -29.581 | -49.856 |
7/6 | +29.794 | +50.215 |
12/1 | -29.980 | -50.529 |
27/8 | +30.122 | +50.768 |
17/10 | +30.686 | +51.718 |
23/11 | -30.964 | -52.187 |
22/17 | -31.032 | -52.301 |
23/5 | -31.309 | -52.769 |
25/4 | +31.354 | +52.843 |
31/17 | -31.419 | -52.955 |
31/24 | +31.583 | +53.231 |
19/4 | +31.804 | +53.603 |
12/11 | -31.971 | -53.884 |
12/5 | -32.317 | -54.467 |
17/2 | +33.022 | +55.656 |
18/7 | -33.094 | -55.776 |
28/17 | -33.209 | -55.970 |
9/8 | +33.422 | +56.329 |
25/23 | +33.646 | +56.707 |
20/13 | -33.790 | -56.950 |
30/17 | -33.986 | -57.279 |
23/19 | -34.096 | -57.466 |
21/20 | +34.199 | +57.639 |
29/17 | -34.627 | -58.361 |
25/12 | +34.653 | +58.405 |
19/12 | +35.104 | +59.164 |
13/4 | +36.127 | +60.888 |
17/6 | +36.322 | +61.217 |
21/4 | +36.535 | +61.576 |
8/3 | -36.722 | -61.891 |
20/7 | -37.498 | -63.200 |
32/23 | -37.729 | -63.588 |
29/16 | +38.416 | +64.747 |
23/13 | -38.419 | -64.751 |
33/8 | +38.712 | +65.246 |
23/21 | -38.827 | -65.440 |
15/8 | +39.058 | +65.828 |
13/12 | +39.426 | +66.449 |
18/17 | -39.622 | -66.778 |
7/4 | +39.835 | +67.138 |
8/1 | -40.021 | -67.452 |
31/16 | +41.624 | +70.153 |
11/8 | +42.012 | +70.807 |
23/7 | -42.127 | -71.001 |
8/5 | -42.358 | -71.390 |
12/7 | -43.134 | -72.699 |
24/1 | -43.321 | -73.013 |
27/16 | +43.463 | +73.252 |
20/17 | -44.026 | -74.202 |
25/8 | +44.694 | +75.327 |
19/8 | +45.144 | +76.087 |
24/11 | -45.311 | -76.368 |
24/5 | -45.657 | -76.951 |
17/4 | +46.363 | +78.140 |
16/9 | -46.762 | -78.813 |
25/24 | +47.994 | +80.888 |
24/19 | -48.444 | -81.648 |
23/17 | -48.655 | -82.003 |
13/8 | +49.467 | +83.372 |
17/12 | +49.662 | +83.701 |
21/8 | +49.876 | +84.060 |
16/3 | -50.062 | -84.375 |
32/29 | -51.757 | -87.231 |
33/16 | +52.053 | +87.730 |
16/15 | -52.398 | -88.312 |
24/13 | -52.767 | -88.933 |
8/7 | -53.175 | -89.622 |
16/1 | -53.362 | -89.936 |
32/31 | -54.964 | -92.637 |
16/11 | -55.352 | -93.291 |
16/5 | -55.698 | -93.873 |
24/7 | -56.475 | -95.183 |
32/27 | -56.803 | -95.736 |
25/16 | +58.034 | +97.811 |
19/16 | +58.485 | +98.571 |
17/8 | +59.703 | +100.624 |
32/9 | -60.103 | -101.297 |
16/13 | -62.807 | -105.856 |
24/17 | -63.003 | -106.185 |
21/16 | +63.216 | +106.544 |
32/3 | -63.402 | -106.858 |
33/32 | +65.393 | +110.214 |
32/15 | -65.739 | -110.796 |
16/7 | -66.516 | -112.106 |
32/1 | -66.702 | -112.420 |
32/11 | -68.693 | -115.775 |
32/5 | -69.038 | -116.357 |
32/25 | -71.375 | -120.295 |
32/19 | -71.825 | -121.055 |
17/16 | +73.044 | +123.108 |
32/13 | -76.148 | -128.340 |
32/21 | -76.556 | -129.028 |
32/7 | -79.856 | -134.589 |
32/17 | -86.384 | -145.592 |
Record on the Riemann zeta function with prime 2 removed
71zpi sets a height record on the Riemann zeta function with prime 2 removed. The previous record is 53zpi and the next one is 93zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime number 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with prime 2 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
53zpi | 16.3979501311478 | 73.1798786069366 | 2.518818 | 16edo | 1170.87805771099 | 16.4044889390925 | 73.1507092025500 | 4.100909 | 16edo | 1170.41134724080 |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 20edo | 1186.65961344942 | 20.2459529213541 | 59.2711049295348 | 4.137236 | 20edo | 1185.42209859070 |
93zpi | 24.5782550666850 | 48.8236449961234 | 2.810487 | 25edo | 1220.59112490308 | 24.5738316304204 | 48.8324335434323 | 4.665720 | 25edo | 1220.81083858581 |
Harmonic series in 71zpi with prime 2 removed
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.6 | -5.3 | -29.2 | -0.6 | -19.9 | +9.6 | +15.5 | -10.6 | -15.1 | -2.3 | +24.8 | +4.8 | -5.0 | -5.9 | +1.0 |
Relative (%) | -24.6 | -8.9 | -49.2 | -1.0 | -33.5 | +16.2 | +26.2 | -17.8 | -25.6 | -3.9 | +41.9 | +8.1 | -8.4 | -9.9 | +1.6 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.5 | -25.1 | -0.2 | +29.5 | +4.3 | -16.9 | +24.7 | +10.3 | -1.1 | -9.8 | -15.8 | -19.5 | -21.0 | -20.4 | -17.9 | -13.6 | -7.6 | -0.0 |
Relative (%) | +24.5 | -42.4 | -0.3 | +49.8 | +7.3 | -28.5 | +41.6 | +17.3 | -1.9 | -16.5 | -26.7 | -32.9 | -35.4 | -34.5 | -30.2 | -23.0 | -12.9 | -0.1 | |
Step | 83 | 84 | 86 | 88 | 89 | 90 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
Intervals in 71zpi with prime 2 removed
JI ratios are comprised of 34-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 13 steps Limma = 8 steps Apotome = 5 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.271 | 34/33, 33/32, 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | vA1, ^d2 | 4 |
2 | 118.542 | 19/18, 18/17, 17/16, 33/31, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | m2 | 8 |
3 | 177.813 | 12/11, 23/21, 34/31, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vM2 | 12 |
4 | 237.084 | 26/23, 17/15, 25/22, 33/29, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25 | vvA2 | 16 |
5 | 296.356 | 7/6, 34/29, 27/23, 20/17, 33/28, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 20 |
6 | 355.627 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | vvM3 | 24 |
7 | 414.898 | 5/4, 34/27, 29/23, 24/19, 19/15, 33/26, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^M3 | 28 |
8 | 474.169 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 33/25, 4/3 | vv4 | 32 |
9 | 533.440 | 31/23, 27/20, 23/17, 19/14, 34/25, 15/11, 26/19, 11/8, 29/21 | ^^4 | 36 |
10 | 592.711 | 18/13, 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | ^A4 | 40 |
11 | 651.982 | 33/23, 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21, 34/23 | ^^d5 | 44 |
12 | 711.253 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^5 | 48 |
13 | 770.524 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12 | ^^d6 | 52 |
14 | 829.795 | 27/17, 8/5, 29/18, 21/13, 34/21, 13/8, 31/19, 18/11 | ^m6 | 56 |
15 | 889.067 | 23/14, 28/17, 33/20, 5/3, 32/19, 27/16, 22/13, 17/10 | M6 | 60 |
16 | 948.338 | 29/17, 12/7, 31/18, 19/11, 26/15, 33/19, 7/4 | vA6, ^d7 | 64 |
17 | 1007.609 | 30/17, 23/13, 16/9, 25/14, 34/19, 9/5, 29/16, 20/11 | m7 | 68 |
18 | 1066.880 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | vM7 | 72 |
19 | 1126.151 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16, 33/17 | vvA7 | 76 |
20 | 1185.422 | 2/1 | v1 +1 oct | 80 |
21 | 1244.693 | 33/16, 31/15, 29/14, 27/13, 25/12 | vvA1 +1 oct | 84 |
22 | 1303.964 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | vm2 +1 oct | 88 |
23 | 1363.235 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | vvM2 +1 oct | 92 |
24 | 1422.507 | 9/4, 34/15, 25/11, 16/7, 23/10, 30/13 | ^^M2 +1 oct | 96 |
25 | 1481.778 | 7/3, 33/14, 26/11, 19/8, 31/13 | vvm3 +1 oct | 100 |
26 | 1541.049 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^^m3 +1 oct | 104 |
27 | 1600.320 | 5/2, 33/13, 28/11, 23/9 | ^M3 +1 oct | 108 |
28 | 1659.591 | 18/7, 31/12, 13/5, 34/13, 21/8, 29/11 | ^^d4 +1 oct | 112 |
29 | 1718.862 | 8/3, 27/10, 19/7, 30/11 | ^4 +1 oct | 116 |
30 | 1778.133 | 11/4, 25/9, 14/5, 31/11, 17/6 | A4 +1 oct | 120 |
31 | 1837.404 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^d5 +1 oct | 124 |
32 | 1896.675 | 3/1 | P5 +1 oct | 128 |
33 | 1955.946 | 34/11, 31/10, 28/9, 25/8, 22/7 | vA5 +1 oct, ^d6 +1 oct | 132 |
34 | 2015.218 | 19/6, 16/5, 29/9, 13/4 | m6 +1 oct | 136 |
35 | 2074.489 | 23/7, 33/10, 10/3 | vM6 +1 oct | 140 |
36 | 2133.760 | 27/8, 17/5, 24/7, 31/9 | vvA6 +1 oct | 144 |
37 | 2193.031 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 148 |
38 | 2252.302 | 29/8, 11/3, 26/7 | vvM7 +1 oct | 152 |
39 | 2311.573 | 15/4, 34/9, 19/5, 23/6, 27/7 | ^^M7 +1 oct | 156 |
40 | 2370.844 | 31/8, 4/1 | vv1 +2 oct | 160 |
41 | 2430.115 | 33/8 | ^^1 +2 oct | 164 |
42 | 2489.386 | 29/7, 25/6, 21/5, 17/4 | vvm2 +2 oct | 168 |
43 | 2548.658 | 30/7, 13/3, 22/5, 31/7 | ^^m2 +2 oct | 172 |
44 | 2607.929 | 9/2, 32/7 | ^M2 +2 oct | 176 |
45 | 2667.200 | 23/5, 14/3, 33/7 | ^^d3 +2 oct | 180 |
46 | 2726.471 | 19/4, 24/5, 29/6, 34/7 | ^m3 +2 oct | 184 |
47 | 2785.742 | 5/1 | M3 +2 oct | 188 |
48 | 2845.013 | 31/6, 26/5, 21/4 | vA3 +2 oct, ^d4 +2 oct | 192 |
49 | 2904.284 | 16/3, 27/5 | P4 +2 oct | 196 |
50 | 2963.555 | 11/2, 28/5 | vA4 +2 oct | 200 |
51 | 3022.826 | 17/3, 23/4, 29/5 | d5 +2 oct | 204 |
52 | 3082.097 | 6/1 | v5 +2 oct | 208 |
53 | 3141.369 | 31/5 | vvA5 +2 oct | 212 |
54 | 3200.640 | 25/4, 19/3, 32/5 | vm6 +2 oct | 216 |
55 | 3259.911 | 13/2, 33/5, 20/3 | vvM6 +2 oct | 220 |
56 | 3319.182 | 27/4, 34/5 | ^^M6 +2 oct | 224 |
57 | 3378.453 | 7/1 | vvm7 +2 oct | 228 |
58 | 3437.724 | 29/4, 22/3 | ^^m7 +2 oct | 232 |
59 | 3496.995 | 15/2, 23/3 | ^M7 +2 oct | 236 |
60 | 3556.266 | 31/4 | ^^d1 +3 oct | 240 |
61 | 3615.537 | 8/1 | ^1 +3 oct | 244 |
62 | 3674.809 | 33/4, 25/3 | ^^d2 +3 oct | 248 |
63 | 3734.080 | 17/2, 26/3 | ^m2 +3 oct | 252 |
64 | 3793.351 | 9/1 | M2 +3 oct | 256 |
65 | 3852.622 | 28/3 | vA2 +3 oct, ^d3 +3 oct | 260 |
66 | 3911.893 | 19/2, 29/3 | m3 +3 oct | 264 |
67 | 3971.164 | 10/1 | vM3 +3 oct | 268 |
68 | 4030.435 | 31/3 | vvA3 +3 oct | 272 |
69 | 4089.706 | 21/2, 32/3 | v4 +3 oct | 276 |
70 | 4148.977 | 11/1 | vvA4 +3 oct | 280 |
71 | 4208.248 | 34/3, 23/2 | vd5 +3 oct | 284 |
72 | 4267.520 | vv5 +3 oct | 288 | |
73 | 4326.791 | 12/1 | ^^5 +3 oct | 292 |
74 | 4386.062 | 25/2 | vvm6 +3 oct | 296 |
75 | 4445.333 | 13/1 | ^^m6 +3 oct | 300 |
76 | 4504.604 | 27/2 | ^M6 +3 oct | 304 |
77 | 4563.875 | 14/1 | ^^d7 +3 oct | 308 |
78 | 4623.146 | 29/2 | ^m7 +3 oct | 312 |
79 | 4682.417 | 15/1 | M7 +3 oct | 316 |
80 | 4741.688 | 31/2 | vA7 +3 oct, ^d1 +4 oct | 320 |
81 | 4800.959 | 16/1 | P1 +4 oct | 324 |
82 | 4860.231 | 33/2 | vA1 +4 oct, ^d2 +4 oct | 328 |
83 | 4919.502 | 17/1 | m2 +4 oct | 332 |
84 | 4978.773 | 18/1 | vM2 +4 oct | 336 |
85 | 5038.044 | vvA2 +4 oct | 340 | |
86 | 5097.315 | 19/1 | vm3 +4 oct | 344 |
87 | 5156.586 | vvM3 +4 oct | 348 | |
88 | 5215.857 | 20/1 | ^^M3 +4 oct | 352 |
89 | 5275.128 | 21/1 | vv4 +4 oct | 356 |
90 | 5334.399 | 22/1 | ^^4 +4 oct | 360 |
91 | 5393.671 | ^A4 +4 oct | 364 | |
92 | 5452.942 | 23/1 | ^^d5 +4 oct | 368 |
93 | 5512.213 | 24/1 | ^5 +4 oct | 372 |
94 | 5571.484 | 25/1 | ^^d6 +4 oct | 376 |
95 | 5630.755 | 26/1 | ^m6 +4 oct | 380 |
96 | 5690.026 | 27/1 | M6 +4 oct | 384 |
97 | 5749.297 | 28/1 | vA6 +4 oct, ^d7 +4 oct | 388 |
98 | 5808.568 | 29/1 | m7 +4 oct | 392 |
99 | 5867.839 | 30/1 | vM7 +4 oct | 396 |
100 | 5927.110 | 31/1 | vvA7 +4 oct | 400 |
101 | 5986.382 | 32/1 | v1 +5 oct | 404 |
102 | 6045.653 | 33/1 | vvA1 +5 oct | 408 |
103 | 6104.924 | 34/1 | vm2 +5 oct | 412 |
Approximation to JI in 71zpi with prime 2 removed
Interval mappings in 71zpi with prime 2 removed
The following tables show how 34-integer-limit intervals are represented in 71zpi with prime 2 removed. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
34/1 | -0.032 | -0.053 |
34/19 | +0.166 | +0.281 |
23/12 | -0.168 | -0.284 |
19/1 | -0.198 | -0.334 |
14/3 | +0.329 | +0.555 |
19/5 | +0.374 | +0.631 |
21/13 | -0.458 | -0.772 |
34/5 | +0.540 | +0.911 |
5/1 | -0.572 | -0.965 |
30/29 | +0.580 | +0.978 |
24/7 | +0.631 | +1.064 |
27/10 | -0.689 | -1.163 |
26/9 | +0.787 | +1.327 |
15/14 | -0.901 | -1.519 |
25/19 | -0.946 | -1.595 |
16/1 | +0.959 | +1.619 |
17/8 | -0.991 | -1.672 |
31/22 | -1.007 | -1.698 |
27/22 | +1.080 | +1.821 |
34/25 | +1.112 | +1.876 |
25/1 | -1.144 | -1.929 |
29/6 | -1.151 | -1.943 |
19/16 | -1.157 | -1.953 |
25/11 | +1.197 | +2.020 |
27/2 | -1.261 | -2.128 |
29/28 | -1.480 | -2.497 |
16/5 | +1.531 | +2.584 |
31/28 | +1.604 | +2.706 |
11/5 | -1.769 | -2.984 |
31/6 | +1.932 | +3.260 |
31/27 | -2.086 | -3.520 |
25/16 | -2.103 | -3.548 |
19/11 | +2.143 | +3.615 |
33/26 | +2.152 | +3.632 |
32/27 | +2.221 | +3.746 |
34/11 | +2.309 | +3.896 |
11/1 | -2.341 | -3.949 |
31/30 | +2.504 | +4.225 |
14/11 | -2.610 | -4.404 |
33/14 | -2.669 | -4.504 |
31/10 | -2.775 | -4.683 |
11/3 | +2.939 | +4.959 |
32/9 | -3.059 | -5.161 |
31/29 | +3.084 | +5.203 |
16/11 | +3.300 | +5.568 |
31/2 | -3.347 | -5.647 |
21/16 | +3.388 | +5.716 |
15/11 | -3.511 | -5.923 |
28/27 | -3.690 | -6.225 |
25/14 | +3.807 | +6.423 |
16/13 | -3.846 | -6.488 |
26/15 | -3.921 | -6.616 |
9/2 | +4.019 | +6.780 |
29/22 | -4.090 | -6.901 |
29/18 | +4.128 | +6.965 |
25/3 | +4.136 | +6.978 |
24/17 | -4.289 | -7.235 |
32/31 | +4.307 | +7.266 |
21/1 | +4.347 | +7.335 |
34/21 | -4.379 | -7.388 |
14/5 | -4.379 | -7.388 |
26/3 | -4.493 | -7.581 |
21/19 | +4.545 | +7.669 |
10/9 | -4.590 | -7.745 |
5/3 | +4.708 | +7.943 |
19/14 | +4.753 | +8.019 |
13/1 | +4.805 | +8.107 |
13/7 | -4.822 | -8.135 |
34/13 | -4.837 | -8.160 |
23/20 | -4.876 | -8.227 |
21/5 | +4.919 | +8.300 |
17/7 | +4.919 | +8.300 |
14/1 | -4.951 | -8.353 |
19/13 | -5.003 | -8.441 |
19/3 | +5.082 | +8.574 |
29/27 | -5.170 | -8.723 |
34/3 | +5.248 | +8.854 |
3/1 | -5.280 | -8.908 |
13/5 | +5.377 | +9.072 |
23/4 | -5.448 | -9.192 |
24/13 | +5.453 | +9.199 |
25/21 | -5.491 | -9.264 |
14/9 | +5.608 | +9.462 |
19/15 | +5.653 | +9.538 |
34/15 | +5.820 | +9.819 |
15/1 | -5.851 | -9.872 |
29/10 | -5.859 | -9.885 |
8/7 | +5.910 | +9.972 |
25/13 | -5.949 | -10.037 |
33/32 | +5.998 | +10.120 |
27/26 | -6.066 | -10.235 |
16/3 | +6.239 | +10.526 |
22/9 | -6.359 | -10.729 |
29/2 | -6.431 | -10.850 |
33/25 | -6.477 | -10.927 |
21/11 | +6.688 | +11.284 |
16/15 | +6.811 | +11.491 |
33/2 | +6.958 | +11.739 |
33/5 | -7.048 | -11.892 |
13/11 | +7.146 | +12.056 |
31/18 | +7.212 | +12.168 |
31/9 | -7.366 | -12.427 |
32/29 | +7.391 | +12.469 |
33/19 | -7.422 | -12.523 |
26/11 | -7.432 | -12.539 |
33/10 | +7.529 | +12.703 |
34/33 | +7.589 | +12.803 |
33/1 | -7.620 | -12.857 |
32/15 | -7.767 | -13.104 |
29/4 | +8.147 | +13.745 |
31/26 | -8.152 | -13.754 |
11/9 | +8.219 | +13.866 |
32/3 | -8.339 | -14.069 |
33/16 | -8.580 | -14.475 |
26/25 | -8.629 | -14.559 |
16/7 | -8.668 | -14.624 |
29/20 | +8.719 | +14.710 |
15/2 | +8.726 | +14.723 |
28/9 | -8.969 | -15.133 |
23/8 | +9.130 | +15.404 |
26/5 | -9.201 | -15.523 |
3/2 | +9.298 | +15.688 |
25/9 | +9.416 | +15.886 |
23/18 | -9.467 | -15.972 |
26/19 | -9.575 | -16.154 |
7/1 | +9.627 | +16.242 |
34/7 | -9.659 | -16.296 |
17/13 | +9.741 | +16.435 |
14/13 | -9.756 | -16.460 |
26/1 | -9.773 | -16.488 |
19/7 | -9.825 | -16.576 |
10/3 | -9.870 | -16.652 |
9/5 | -9.988 | -16.851 |
13/3 | +10.085 | +17.015 |
23/17 | +10.121 | +17.076 |
7/5 | +10.199 | +17.207 |
21/17 | -10.199 | -17.207 |
24/1 | +10.258 | +17.307 |
17/12 | -10.289 | -17.360 |
33/31 | +10.305 | +17.386 |
19/9 | +10.361 | +17.481 |
29/9 | -10.450 | -17.630 |
24/19 | +10.456 | +17.641 |
34/9 | +10.528 | +17.762 |
9/1 | -10.559 | -17.815 |
15/13 | -10.657 | -17.979 |
13/8 | -10.732 | -18.107 |
25/7 | -10.771 | -18.172 |
24/5 | +10.830 | +18.271 |
27/14 | -10.888 | -18.370 |
22/15 | -11.067 | -18.672 |
21/8 | -11.190 | -18.879 |
31/4 | +11.231 | +18.948 |
29/26 | -11.236 | -18.957 |
32/11 | -11.278 | -19.027 |
25/24 | -11.401 | -19.236 |
16/9 | +11.519 | +19.434 |
22/3 | -11.639 | -19.637 |
31/20 | +11.803 | +19.913 |
33/28 | +11.908 | +20.092 |
11/7 | -11.968 | -20.191 |
31/15 | -12.074 | -20.370 |
11/2 | +12.237 | +20.646 |
33/13 | -12.425 | -20.964 |
32/25 | -12.475 | -21.047 |
24/11 | +12.598 | +21.255 |
31/3 | -12.645 | -21.335 |
11/10 | +12.809 | +21.611 |
31/14 | -12.974 | -21.890 |
32/5 | -13.047 | -22.012 |
27/4 | +13.317 | +22.468 |
33/29 | +13.389 | +22.589 |
32/19 | -13.420 | -22.642 |
29/12 | +13.427 | +22.653 |
25/2 | +13.434 | +22.666 |
27/11 | -13.498 | -22.774 |
17/16 | +13.587 | +22.923 |
29/23 | +13.595 | +22.937 |
32/1 | -13.618 | -22.976 |
28/15 | -13.677 | -23.076 |
27/20 | +13.889 | +23.432 |
5/2 | +14.006 | +23.631 |
26/21 | -14.120 | -23.823 |
30/23 | +14.174 | +23.915 |
28/3 | -14.249 | -24.041 |
19/2 | +14.380 | +24.261 |
24/23 | -14.410 | -24.311 |
17/1 | +14.546 | +24.542 |
2/1 | -14.578 | -24.595 |
27/25 | -14.695 | -24.793 |
19/17 | -14.744 | -24.876 |
23/6 | -14.746 | -24.879 |
7/3 | +14.907 | +25.150 |
19/10 | +14.952 | +25.226 |
20/17 | +14.997 | +25.303 |
23/7 | +15.040 | +25.375 |
28/23 | +15.075 | +25.434 |
17/5 | +15.118 | +25.507 |
10/1 | -15.150 | -25.560 |
29/15 | -15.157 | -25.573 |
12/7 | +15.209 | +25.659 |
27/5 | -15.267 | -25.758 |
13/9 | +15.364 | +25.922 |
15/7 | -15.478 | -26.115 |
8/1 | +15.537 | +26.214 |
17/4 | -15.569 | -26.267 |
31/11 | -15.584 | -26.294 |
27/19 | -15.641 | -26.389 |
25/17 | -15.690 | -26.471 |
29/3 | -15.729 | -26.538 |
19/8 | -15.735 | -26.548 |
25/22 | +15.775 | +26.615 |
34/27 | +15.807 | +26.670 |
27/1 | -15.839 | -26.723 |
29/14 | -16.058 | -27.093 |
8/5 | +16.109 | +27.179 |
22/5 | -16.347 | -27.580 |
31/12 | +16.510 | +27.856 |
31/23 | +16.679 | +28.140 |
25/8 | -16.681 | -28.144 |
22/19 | -16.721 | -28.210 |
31/25 | -16.782 | -28.313 |
27/16 | -16.798 | -28.342 |
17/11 | +16.887 | +28.491 |
22/1 | -16.918 | -28.544 |
28/11 | -17.188 | -28.999 |
33/7 | -17.247 | -29.099 |
31/5 | -17.353 | -29.278 |
11/6 | +17.517 | +29.554 |
23/22 | -17.685 | -29.838 |
31/19 | -17.727 | -29.908 |
11/8 | -17.878 | -30.163 |
34/31 | +17.893 | +30.189 |
31/1 | -17.925 | -30.243 |
32/21 | -17.966 | -30.311 |
30/11 | -18.089 | -30.519 |
28/25 | -18.385 | -31.019 |
32/13 | -18.424 | -31.084 |
9/4 | +18.597 | +31.375 |
29/11 | -18.668 | -31.496 |
25/6 | +18.714 | +31.574 |
27/23 | +18.765 | +31.659 |
31/16 | -18.885 | -31.861 |
21/2 | +18.925 | +31.930 |
28/5 | -18.957 | -31.983 |
20/9 | -19.168 | -32.340 |
6/5 | -19.286 | -32.538 |
28/19 | -19.331 | -32.614 |
13/2 | +19.383 | +32.702 |
26/7 | -19.400 | -32.731 |
23/10 | -19.454 | -32.822 |
21/10 | +19.497 | +32.895 |
17/14 | +19.497 | +32.895 |
28/1 | -19.529 | -32.948 |
18/17 | +19.588 | +33.047 |
19/6 | +19.660 | +33.169 |
17/3 | +19.826 | +33.450 |
6/1 | -19.858 | -33.503 |
23/13 | +19.862 | +33.511 |
29/25 | -19.865 | -33.516 |
20/7 | +19.916 | +33.602 |
13/10 | +19.955 | +33.667 |
23/2 | -20.026 | -33.787 |
13/12 | -20.030 | -33.795 |
9/7 | -20.186 | -34.058 |
30/19 | -20.231 | -34.134 |
23/21 | +20.320 | +34.283 |
17/15 | +20.398 | +34.414 |
30/1 | -20.429 | -34.468 |
29/5 | -20.437 | -34.481 |
7/4 | -20.488 | -34.567 |
27/13 | -20.644 | -34.830 |
29/19 | -20.811 | -35.111 |
8/3 | +20.817 | +35.122 |
34/29 | +20.977 | +35.392 |
32/23 | +20.985 | +35.406 |
29/1 | -21.009 | -35.445 |
22/21 | -21.266 | -35.879 |
15/8 | -21.389 | -36.086 |
33/4 | +21.536 | +36.334 |
22/13 | -21.724 | -36.651 |
29/16 | -21.968 | -37.064 |
33/20 | +22.107 | +37.299 |
33/17 | -22.167 | -37.399 |
31/21 | -22.273 | -37.577 |
29/8 | +22.725 | +38.340 |
31/13 | -22.730 | -38.350 |
18/11 | -22.797 | -38.462 |
33/8 | -23.158 | -39.071 |
32/7 | -23.245 | -39.219 |
15/4 | +23.304 | +39.318 |
23/16 | +23.708 | +39.999 |
29/17 | +23.716 | +40.013 |
4/3 | -23.876 | -40.283 |
25/18 | +23.994 | +40.481 |
23/9 | -24.045 | -40.567 |
7/2 | +24.205 | +40.838 |
30/17 | +24.295 | +40.990 |
26/17 | -24.319 | -41.030 |
28/13 | -24.334 | -41.055 |
20/3 | -24.448 | -41.248 |
18/7 | +24.507 | +41.347 |
18/5 | -24.565 | -41.446 |
13/6 | +24.663 | +41.610 |
23/1 | +24.667 | +41.618 |
34/23 | -24.699 | -41.671 |
20/13 | +24.738 | +41.738 |
10/7 | -24.777 | -41.802 |
26/23 | +24.831 | +41.894 |
12/1 | +24.836 | +41.902 |
23/19 | +24.865 | +41.952 |
17/6 | -24.867 | -41.955 |
19/18 | +24.939 | +42.076 |
19/12 | -25.034 | -42.236 |
17/9 | +25.106 | +42.357 |
18/1 | -25.137 | -42.411 |
28/17 | +25.196 | +42.510 |
21/20 | -25.196 | -42.510 |
30/13 | -25.235 | -42.575 |
23/5 | +25.239 | +42.582 |
13/4 | -25.310 | -42.702 |
29/21 | -25.356 | -42.780 |
12/5 | +25.407 | +42.866 |
27/7 | -25.466 | -42.965 |
21/4 | -25.768 | -43.475 |
31/8 | +25.809 | +43.543 |
25/23 | -25.811 | -43.547 |
29/13 | -25.814 | -43.553 |
25/12 | -25.979 | -43.831 |
9/8 | -26.097 | -44.029 |
22/7 | -26.546 | -44.787 |
31/17 | +26.800 | +45.215 |
11/4 | +26.815 | +45.242 |
33/23 | +26.984 | +45.526 |
23/11 | +27.008 | +45.567 |
12/11 | +27.176 | +45.851 |
20/11 | -27.387 | -46.206 |
31/7 | -27.552 | -46.485 |
22/17 | +27.806 | +46.914 |
27/8 | +27.895 | +47.063 |
29/24 | +28.004 | +47.248 |
25/4 | +28.012 | +47.261 |
32/17 | -28.165 | -47.518 |
31/24 | -28.183 | -47.549 |
5/4 | +28.584 | +48.226 |
29/7 | +28.635 | +48.312 |
23/15 | -28.752 | -48.510 |
27/17 | +28.886 | +48.735 |
19/4 | +28.958 | +48.857 |
17/2 | +29.124 | +49.137 |
4/1 | -29.156 | -49.191 |
30/7 | +29.215 | +49.290 |
23/3 | -29.324 | -49.475 |
18/13 | +29.329 | +49.482 |
7/6 | +29.485 | +49.745 |
20/19 | -29.530 | -49.821 |
20/1 | +29.544 | +49.845 |
17/10 | -29.575 | -49.898 |
23/14 | +29.618 | +49.971 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
34/1 | -0.032 | -0.053 |
34/19 | +0.166 | +0.281 |
19/1 | -0.198 | -0.334 |
14/3 | +0.329 | +0.555 |
19/5 | +0.374 | +0.631 |
21/13 | -0.458 | -0.772 |
34/5 | +0.540 | +0.911 |
5/1 | -0.572 | -0.965 |
30/29 | +0.580 | +0.978 |
27/10 | -0.689 | -1.163 |
26/9 | +0.787 | +1.327 |
15/14 | -0.901 | -1.519 |
25/19 | -0.946 | -1.595 |
31/22 | -1.007 | -1.698 |
27/22 | +1.080 | +1.821 |
34/25 | +1.112 | +1.876 |
25/1 | -1.144 | -1.929 |
29/6 | -1.151 | -1.943 |
25/11 | +1.197 | +2.020 |
27/2 | -1.261 | -2.128 |
29/28 | -1.480 | -2.497 |
31/28 | +1.604 | +2.706 |
11/5 | -1.769 | -2.984 |
31/6 | +1.932 | +3.260 |
31/27 | -2.086 | -3.520 |
19/11 | +2.143 | +3.615 |
33/26 | +2.152 | +3.632 |
34/11 | +2.309 | +3.896 |
11/1 | -2.341 | -3.949 |
31/30 | +2.504 | +4.225 |
14/11 | -2.610 | -4.404 |
33/14 | -2.669 | -4.504 |
31/10 | -2.775 | -4.683 |
11/3 | +2.939 | +4.959 |
31/29 | +3.084 | +5.203 |
31/2 | -3.347 | -5.647 |
15/11 | -3.511 | -5.923 |
28/27 | -3.690 | -6.225 |
25/14 | +3.807 | +6.423 |
26/15 | -3.921 | -6.616 |
9/2 | +4.019 | +6.780 |
29/22 | -4.090 | -6.901 |
29/18 | +4.128 | +6.965 |
25/3 | +4.136 | +6.978 |
21/1 | +4.347 | +7.335 |
34/21 | -4.379 | -7.388 |
14/5 | -4.379 | -7.388 |
26/3 | -4.493 | -7.581 |
21/19 | +4.545 | +7.669 |
10/9 | -4.590 | -7.745 |
5/3 | +4.708 | +7.943 |
19/14 | +4.753 | +8.019 |
13/1 | +4.805 | +8.107 |
13/7 | -4.822 | -8.135 |
34/13 | -4.837 | -8.160 |
21/5 | +4.919 | +8.300 |
17/7 | +4.919 | +8.300 |
14/1 | -4.951 | -8.353 |
19/13 | -5.003 | -8.441 |
19/3 | +5.082 | +8.574 |
29/27 | -5.170 | -8.723 |
34/3 | +5.248 | +8.854 |
3/1 | -5.280 | -8.908 |
13/5 | +5.377 | +9.072 |
25/21 | -5.491 | -9.264 |
14/9 | +5.608 | +9.462 |
19/15 | +5.653 | +9.538 |
34/15 | +5.820 | +9.819 |
15/1 | -5.851 | -9.872 |
29/10 | -5.859 | -9.885 |
25/13 | -5.949 | -10.037 |
27/26 | -6.066 | -10.235 |
22/9 | -6.359 | -10.729 |
29/2 | -6.431 | -10.850 |
33/25 | -6.477 | -10.927 |
21/11 | +6.688 | +11.284 |
33/2 | +6.958 | +11.739 |
33/5 | -7.048 | -11.892 |
13/11 | +7.146 | +12.056 |
31/18 | +7.212 | +12.168 |
31/9 | -7.366 | -12.427 |
33/19 | -7.422 | -12.523 |
26/11 | -7.432 | -12.539 |
33/10 | +7.529 | +12.703 |
34/33 | +7.589 | +12.803 |
33/1 | -7.620 | -12.857 |
29/4 | +8.147 | +13.745 |
31/26 | -8.152 | -13.754 |
11/9 | +8.219 | +13.866 |
26/25 | -8.629 | -14.559 |
29/20 | +8.719 | +14.710 |
15/2 | +8.726 | +14.723 |
28/9 | -8.969 | -15.133 |
26/5 | -9.201 | -15.523 |
3/2 | +9.298 | +15.688 |
25/9 | +9.416 | +15.886 |
26/19 | -9.575 | -16.154 |
7/1 | +9.627 | +16.242 |
34/7 | -9.659 | -16.296 |
17/13 | +9.741 | +16.435 |
14/13 | -9.756 | -16.460 |
26/1 | -9.773 | -16.488 |
19/7 | -9.825 | -16.576 |
10/3 | -9.870 | -16.652 |
9/5 | -9.988 | -16.851 |
13/3 | +10.085 | +17.015 |
23/17 | +10.121 | +17.076 |
7/5 | +10.199 | +17.207 |
21/17 | -10.199 | -17.207 |
33/31 | +10.305 | +17.386 |
19/9 | +10.361 | +17.481 |
29/9 | -10.450 | -17.630 |
34/9 | +10.528 | +17.762 |
9/1 | -10.559 | -17.815 |
15/13 | -10.657 | -17.979 |
25/7 | -10.771 | -18.172 |
27/14 | -10.888 | -18.370 |
22/15 | -11.067 | -18.672 |
31/4 | +11.231 | +18.948 |
29/26 | -11.236 | -18.957 |
22/3 | -11.639 | -19.637 |
31/20 | +11.803 | +19.913 |
33/28 | +11.908 | +20.092 |
11/7 | -11.968 | -20.191 |
31/15 | -12.074 | -20.370 |
11/2 | +12.237 | +20.646 |
33/13 | -12.425 | -20.964 |
31/3 | -12.645 | -21.335 |
11/10 | +12.809 | +21.611 |
31/14 | -12.974 | -21.890 |
27/4 | +13.317 | +22.468 |
33/29 | +13.389 | +22.589 |
29/12 | +13.427 | +22.653 |
25/2 | +13.434 | +22.666 |
27/11 | -13.498 | -22.774 |
28/15 | -13.677 | -23.076 |
27/20 | +13.889 | +23.432 |
5/2 | +14.006 | +23.631 |
26/21 | -14.120 | -23.823 |
28/3 | -14.249 | -24.041 |
19/2 | +14.380 | +24.261 |
17/1 | +14.546 | +24.542 |
2/1 | -14.578 | -24.595 |
27/25 | -14.695 | -24.793 |
19/17 | -14.744 | -24.876 |
7/3 | +14.907 | +25.150 |
19/10 | +14.952 | +25.226 |
23/7 | +15.040 | +25.375 |
17/5 | +15.118 | +25.507 |
10/1 | -15.150 | -25.560 |
29/15 | -15.157 | -25.573 |
27/5 | -15.267 | -25.758 |
13/9 | +15.364 | +25.922 |
15/7 | -15.478 | -26.115 |
31/11 | -15.584 | -26.294 |
27/19 | -15.641 | -26.389 |
25/17 | -15.690 | -26.471 |
29/3 | -15.729 | -26.538 |
25/22 | +15.775 | +26.615 |
34/27 | +15.807 | +26.670 |
27/1 | -15.839 | -26.723 |
29/14 | -16.058 | -27.093 |
22/5 | -16.347 | -27.580 |
31/12 | +16.510 | +27.856 |
22/19 | -16.721 | -28.210 |
31/25 | -16.782 | -28.313 |
17/11 | +16.887 | +28.491 |
22/1 | -16.918 | -28.544 |
28/11 | -17.188 | -28.999 |
33/7 | -17.247 | -29.099 |
31/5 | -17.353 | -29.278 |
11/6 | +17.517 | +29.554 |
31/19 | -17.727 | -29.908 |
34/31 | +17.893 | +30.189 |
31/1 | -17.925 | -30.243 |
30/11 | -18.089 | -30.519 |
28/25 | -18.385 | -31.019 |
9/4 | +18.597 | +31.375 |
29/11 | -18.668 | -31.496 |
25/6 | +18.714 | +31.574 |
21/2 | +18.925 | +31.930 |
28/5 | -18.957 | -31.983 |
20/9 | -19.168 | -32.340 |
6/5 | -19.286 | -32.538 |
28/19 | -19.331 | -32.614 |
13/2 | +19.383 | +32.702 |
26/7 | -19.400 | -32.731 |
21/10 | +19.497 | +32.895 |
17/14 | +19.497 | +32.895 |
28/1 | -19.529 | -32.948 |
19/6 | +19.660 | +33.169 |
17/3 | +19.826 | +33.450 |
6/1 | -19.858 | -33.503 |
23/13 | +19.862 | +33.511 |
29/25 | -19.865 | -33.516 |
13/10 | +19.955 | +33.667 |
9/7 | -20.186 | -34.058 |
30/19 | -20.231 | -34.134 |
23/21 | +20.320 | +34.283 |
17/15 | +20.398 | +34.414 |
30/1 | -20.429 | -34.468 |
29/5 | -20.437 | -34.481 |
27/13 | -20.644 | -34.830 |
29/19 | -20.811 | -35.111 |
34/29 | +20.977 | +35.392 |
29/1 | -21.009 | -35.445 |
22/21 | -21.266 | -35.879 |
33/4 | +21.536 | +36.334 |
22/13 | -21.724 | -36.651 |
33/20 | +22.107 | +37.299 |
33/17 | -22.167 | -37.399 |
31/21 | -22.273 | -37.577 |
29/8 | +22.725 | +38.340 |
31/13 | -22.730 | -38.350 |
18/11 | -22.797 | -38.462 |
15/4 | +23.304 | +39.318 |
4/3 | -23.876 | -40.283 |
25/18 | +23.994 | +40.481 |
7/2 | +24.205 | +40.838 |
26/17 | -24.319 | -41.030 |
28/13 | -24.334 | -41.055 |
20/3 | -24.448 | -41.248 |
18/5 | -24.565 | -41.446 |
13/6 | +24.663 | +41.610 |
23/1 | +24.667 | +41.618 |
34/23 | -24.699 | -41.671 |
10/7 | -24.777 | -41.802 |
23/19 | +24.865 | +41.952 |
19/18 | +24.939 | +42.076 |
17/9 | +25.106 | +42.357 |
18/1 | -25.137 | -42.411 |
30/13 | -25.235 | -42.575 |
23/5 | +25.239 | +42.582 |
29/21 | -25.356 | -42.780 |
27/7 | -25.466 | -42.965 |
31/8 | +25.809 | +43.543 |
25/23 | -25.811 | -43.547 |
29/13 | -25.814 | -43.553 |
22/7 | -26.546 | -44.787 |
11/4 | +26.815 | +45.242 |
23/11 | +27.008 | +45.567 |
20/11 | -27.387 | -46.206 |
31/7 | -27.552 | -46.485 |
27/8 | +27.895 | +47.063 |
29/24 | +28.004 | +47.248 |
25/4 | +28.012 | +47.261 |
5/4 | +28.584 | +48.226 |
19/4 | +28.958 | +48.857 |
17/2 | +29.124 | +49.137 |
4/1 | -29.156 | -49.191 |
7/6 | +29.485 | +49.745 |
20/19 | -29.530 | -49.821 |
23/14 | +29.618 | +49.971 |
17/10 | +29.696 | +50.102 |
20/1 | -29.728 | -50.155 |
18/13 | -29.942 | -50.518 |
23/3 | +29.947 | +50.525 |
30/7 | -30.056 | -50.710 |
27/17 | -30.385 | -51.265 |
23/15 | +30.519 | +51.490 |
29/7 | -30.636 | -51.688 |
31/24 | +31.088 | +52.451 |
22/17 | -31.465 | -53.086 |
12/11 | -32.095 | -54.149 |
33/23 | -32.288 | -54.474 |
31/17 | -32.471 | -54.785 |
9/8 | +33.174 | +55.971 |
25/12 | +33.292 | +56.169 |
21/4 | +33.503 | +56.525 |
12/5 | -33.864 | -57.134 |
13/4 | +33.961 | +57.298 |
21/20 | +34.075 | +57.490 |
28/17 | -34.075 | -57.490 |
19/12 | +34.237 | +57.764 |
17/6 | +34.404 | +58.045 |
12/1 | -34.435 | -58.098 |
26/23 | -34.440 | -58.106 |
20/13 | -34.533 | -58.262 |
18/7 | -34.764 | -58.653 |
30/17 | -34.976 | -59.010 |
23/9 | +35.227 | +59.433 |
29/17 | -35.555 | -59.987 |
33/8 | +36.113 | +60.929 |
29/16 | +37.303 | +62.936 |
15/8 | +37.882 | +63.914 |
8/3 | -38.454 | -64.878 |
7/4 | +38.783 | +65.433 |
13/12 | +39.241 | +66.205 |
23/2 | +39.245 | +66.213 |
20/7 | -39.355 | -66.398 |
18/17 | -39.683 | -66.953 |
23/10 | +39.817 | +67.178 |
31/16 | +40.387 | +68.139 |
27/23 | -40.506 | -68.341 |
11/8 | +41.393 | +69.837 |
23/22 | +41.586 | +70.162 |
27/16 | +42.473 | +71.658 |
25/8 | +42.590 | +71.856 |
31/23 | -42.592 | -71.860 |
8/5 | -43.162 | -72.821 |
19/8 | +43.536 | +73.452 |
17/4 | +43.702 | +73.733 |
8/1 | -43.734 | -73.786 |
12/7 | -44.063 | -74.341 |
28/23 | -44.196 | -74.566 |
20/17 | -44.274 | -74.697 |
23/6 | +44.525 | +75.121 |
30/23 | -45.097 | -76.085 |
29/23 | -45.676 | -77.063 |
24/11 | -46.673 | -78.745 |
16/9 | -47.752 | -80.566 |
25/24 | +47.870 | +80.764 |
21/8 | +48.081 | +81.121 |
24/5 | -48.442 | -81.729 |
13/8 | +48.539 | +81.893 |
24/19 | -48.815 | -82.359 |
17/12 | +48.982 | +82.640 |
24/1 | -49.013 | -82.693 |
23/18 | +49.804 | +84.028 |
33/16 | +50.691 | +85.525 |
32/29 | -51.881 | -87.531 |
16/15 | -52.460 | -88.509 |
16/3 | -53.032 | -89.474 |
8/7 | -53.361 | -90.028 |
24/13 | -53.819 | -90.801 |
23/4 | +53.823 | +90.808 |
23/20 | +54.395 | +91.773 |
32/31 | -54.964 | -92.734 |
16/11 | -55.971 | -94.432 |
32/27 | -57.051 | -96.254 |
25/16 | +57.168 | +96.452 |
16/5 | -57.740 | -97.416 |
19/16 | +58.114 | +98.047 |
17/8 | +58.280 | +98.328 |
16/1 | -58.312 | -98.381 |
24/7 | -58.640 | -98.936 |
23/12 | +59.103 | +99.716 |
32/9 | -62.330 | -105.161 |
21/16 | +62.659 | +105.716 |
16/13 | -63.117 | -106.488 |
24/17 | -63.560 | -107.235 |
33/32 | +65.269 | +110.120 |
32/15 | -67.038 | -113.104 |
32/3 | -67.610 | -114.069 |
16/7 | -67.939 | -114.624 |
23/8 | +68.401 | +115.404 |
32/11 | -70.549 | -119.027 |
32/25 | -71.746 | -121.047 |
32/5 | -72.318 | -122.012 |
32/19 | -72.692 | -122.642 |
17/16 | +72.858 | +122.923 |
32/1 | -72.890 | -122.976 |
24/23 | -73.681 | -124.311 |
32/21 | -77.237 | -130.311 |
32/13 | -77.695 | -131.084 |
32/7 | -82.517 | -139.219 |
23/16 | +82.979 | +139.999 |
32/17 | -87.436 | -147.518 |
32/23 | -97.557 | -164.594 |