Schismic–Pythagorean equivalence continuum: Difference between revisions
POTE -> CTE and CWE since all of these are new items. +intro to sextile. Dirichlet -> smith badness for heptacot until dirichlet is properly documented. |
Cleanup and +commas for fractional-numbered temps |
||
Line 14: | Line 14: | ||
|- | |- | ||
| -1 | | -1 | ||
| [[ | | [[Gracecordial]] | ||
| | | (22 digits) | ||
| {{monzo| -34 20 1 }} | | {{monzo| -34 20 1 }} | ||
|- | |- | ||
| 0 | | 0 | ||
| [[ | | [[Compton]] | ||
| [[531441/524288]] | | [[531441/524288]] | ||
| {{monzo| -19 12 }} | | {{monzo| -19 12 }} | ||
|- | |- | ||
| 1 | | 1 | ||
| [[ | | [[Meantone]] | ||
| [[81/80]] | | [[81/80]] | ||
| {{monzo| -4 4 -1 }} | | {{monzo| -4 4 -1 }} | ||
|- | |- | ||
| 2 | | 2 | ||
| [[ | | [[Diaschismic]] | ||
| [[2048/2025]] | | [[2048/2025]] | ||
| {{monzo| 11 -4 -2 }} | | {{monzo| 11 -4 -2 }} | ||
|- | |- | ||
| 3 | | 3 | ||
| [[ | | [[Misty]] | ||
| [[67108864/66430125]] | | [[67108864/66430125]] | ||
| {{monzo| 26 -12 -3 }} | | {{monzo| 26 -12 -3 }} | ||
|- | |- | ||
| 4 | | 4 | ||
| [[ | | [[Undim]] | ||
| | | (26 digits) | ||
| {{monzo| 41 -20 -4 }} | | {{monzo| 41 -20 -4 }} | ||
|- | |- | ||
| 5 | | 5 | ||
| [[ | | [[Quindromeda]] | ||
| | | (34 digits) | ||
| {{monzo| 56 -28 -5 }} | | {{monzo| 56 -28 -5 }} | ||
|- | |- | ||
| 6 | | 6 | ||
| [[Sextile]] | | [[Sextile]] | ||
| | | (44 digits) | ||
| {{monzo| 71 -36 -6 }} | | {{monzo| 71 -36 -6 }} | ||
|- | |- | ||
| 7 | | 7 | ||
| [[ | | [[Heptacot]] | ||
| | | (52 digits) | ||
| {{monzo| 86 -44 -7 }} | | {{monzo| 86 -44 -7 }} | ||
|- | |- | ||
| 8 | | 8 | ||
| [[World calendar]] | | [[World calendar]] | ||
| | | (62 digits) | ||
| {{monzo| 101 -52 -8 }} | | {{monzo| 101 -52 -8 }} | ||
|- | |- | ||
| 9 | | 9 | ||
| Quinbisa-tritrigu (12&441) | | Quinbisa-tritrigu (12&441) | ||
| | | (70 digits) | ||
| {{monzo| 116 -60 -9 }} | | {{monzo| 116 -60 -9 }} | ||
|- | |- | ||
| 10 | | 10 | ||
| Lesa-quinbigu (12&494) | | Lesa-quinbigu (12&494) | ||
| | | (80 digits) | ||
| {{monzo| 131 -68 -10 }} | | {{monzo| 131 -68 -10 }} | ||
|- | |- | ||
| 11 | | 11 | ||
| Quadtrisa-legu (12&559) | | Quadtrisa-legu (12&559) | ||
| | | (88 digits) | ||
| {{monzo| 146 -76 -11 }} | | {{monzo| 146 -76 -11 }} | ||
|- | |- | ||
| 12 | | 12 | ||
| [[ | | [[Atomic]] | ||
| | | (98 digits) | ||
| [[Kirnberger's atom|{{monzo| 161 -84 -12 }}]] | | [[Kirnberger's atom|{{monzo| 161 -84 -12 }}]] | ||
|- | |- | ||
| 13 | | 13 | ||
| Quintrila-theyo (12&677) | | Quintrila-theyo (12&677) | ||
| | | (106 digits) | ||
| {{monzo| -176 92 13 }} | | {{monzo| -176 92 13 }} | ||
|- | |- | ||
Line 165: | Line 165: | ||
|+ Temperaments with fractional ''n'' and ''m'' | |+ Temperaments with fractional ''n'' and ''m'' | ||
|- | |- | ||
! ''n'' !! ''m'' !! Temperament !! Comma | |||
|- | |- | ||
| 5/3 = 1.{{overline|6}} || 5/2 = 2.5 || [[Passion]] || {{monzo| 18 -4 -5 }} | |||
|- | |- | ||
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Quintaleap]] || {{monzo| 37 -16 -5 }} | |||
|} | |} | ||
Revision as of 08:51, 23 July 2024
The schismic-Pythagorean equivalence continuum is a continuum of 5-limit temperaments which equate a number of schismas (32805/32768) with Pythagorean comma ([-19 12⟩). This continuum is theoretically interesting in that these are all 5-limit temperaments supported by 12edo.
All temperaments in the continuum satisfy (32805/32768)n ~ [-19 12⟩. Varying n results in different temperaments listed in the table below. It converges to schismic as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 12edo due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of n is approximately 12.0078623975…, and temperaments having n near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small Kirnberger's atom (the difference between 12 schismas and the Pythagorean comma) is.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
-1 | Gracecordial | (22 digits) | [-34 20 1⟩ |
0 | Compton | 531441/524288 | [-19 12⟩ |
1 | Meantone | 81/80 | [-4 4 -1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | Misty | 67108864/66430125 | [26 -12 -3⟩ |
4 | Undim | (26 digits) | [41 -20 -4⟩ |
5 | Quindromeda | (34 digits) | [56 -28 -5⟩ |
6 | Sextile | (44 digits) | [71 -36 -6⟩ |
7 | Heptacot | (52 digits) | [86 -44 -7⟩ |
8 | World calendar | (62 digits) | [101 -52 -8⟩ |
9 | Quinbisa-tritrigu (12&441) | (70 digits) | [116 -60 -9⟩ |
10 | Lesa-quinbigu (12&494) | (80 digits) | [131 -68 -10⟩ |
11 | Quadtrisa-legu (12&559) | (88 digits) | [146 -76 -11⟩ |
12 | Atomic | (98 digits) | [161 -84 -12⟩ |
13 | Quintrila-theyo (12&677) | (106 digits) | [-176 92 13⟩ |
… | … | … | … |
∞ | Schismic | 32805/32768 | [-15 8 1⟩ |
We may invert the continuum by setting m such that 1/m + 1/n = 1. This may be called the syntonic-Pythagorean equivalence continuum, which is essentially the same thing. The just value of m is 1.0908441588…
m | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
-1 | Python | 43046721/41943040 | [-23 16 -1⟩ |
0 | Compton | 531441/524288 | [-19 12⟩ |
1 | Schismic | 32805/32768 | [-15 8 1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | Augmented | 128/125 | [7 0 -3⟩ |
4 | Diminished | 648/625 | [3 4 -4⟩ |
5 | Ripple | 6561/6250 | [-1 8 -5⟩ |
6 | Wronecki | 531441/500000 | [-5 12 -6⟩ |
… | … | … | … |
∞ | Meantone | 81/80 | [-4 4 -1⟩ |
n | m | Temperament | Comma |
---|---|---|---|
5/3 = 1.6 | 5/2 = 2.5 | Passion | [18 -4 -5⟩ |
5/2 = 2.5 | 5/3 = 1.6 | Quintaleap | [37 -16 -5⟩ |
Python
Python is generated by a fifth, which is typically flatter than 7\12. The ~5/4 is reached by sixteen fifths octave-reduced, which is a double augmented second (C-Dx). It can be described as 12 & 91, and 103edo is a good tuning.
Subgroup: 2.3.5
Comma list: [-23 16 -1⟩ = 43046721/41943040
Mapping: [⟨1 0 -23], ⟨0 1 16]]
- mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 16 23 ]]
Optimal ET sequence: 12, …, 79, 91, 103
Badness: 0.295079
Sextile
The 5-limit version of sextile reaches the interval class of 5 by -6 perfect fifths minus a period of 1/6-octave.
Subgroup: 2.3.5
Comma list: [71 -36 -6⟩
Mapping: [⟨6 0 71], ⟨0 1 -6]]]
- mapping generators: ~4096/3645, ~3
- CTE: ~4096/3645 = 1\6, ~3/2 = 702.2627 (~4428675/4194304 = 97.7373)
- CWE: ~4096/3645 = 1\6, ~3/2 = 702.2434 (~4428675/4194304 = 97.7566)
Wedgie: ⟨⟨ 6 -36 -77 ]]
Optimal ET sequence: 12, …, 222, 234, 246, 258, 270, 1068, 1338, 1608, 1878, 4026bc
Badness: 0.555423
Heptacot
Heptacot tempers out the heptacot comma and divides the fifth into seven equal parts, the most notable example being 12edo (7\12).
Subgroup: 2.3.5
Comma list: [86 -44 -7⟩
Mapping: [⟨1 1 6], ⟨0 7 -44]]]
Optimal ET sequence: 12, …, 287, 299, 311, 323, 981, 1304, 5539bc, 6843bbcc
Badness: 0.683