198edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Improve intro. Remove mentioning being the opv of semicanou since I'm planning on a redefinition of the 13-limit version. Add it in the categories instead cuz there's no harm, and remove those which are supported by 99et
+RTT table
Line 11: Line 11:
== Intervals ==
== Intervals ==
{{main|Table of 198edo intervals}}
{{main|Table of 198edo intervals}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5.7.11
| 2401/2400, 3025/3024, 3136/3125, 4375/4374
| [{{val| 198 314 460 556 685 }}]
| -0.344
| 0.291
| 4.80
|-
| 2.3.5.7.11.13
| 352/351, 676/675, 847/845, 1716/1715, 3025/3024
| [{{val| 198 314 460 556 685 733 }}]
| -0.372
| 0.273
| 4.50
|}
=== Rank-2 temperaments ===
Note: temperaments supported by 99et are not included.
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 2
| 38\198
| 230.30
| 8/7
| [[Hemigamera]]
|-
| 2
| 47\198<br>(52\198)
| 315.15<br>(284.85)
| 6/5<br>(33/28)
| [[Semiparakleismic]]
|-
| 2
| 58\198<br>(41\198)
| 351.52<br>(248.48)
| 49/40<br>(15/13)
| [[Semihemi]]
|-
| 2
| 56\198<br>(43\198)
| 339.39<br>(260.61)
| 243/200<br>(64/55)
| [[Hemiamity]]
|-
| 2
| 74\198<br>(25\198)
| 448.48<br>(151.51)
| 35/27<br>(12/11)
| [[Neusec]]
|-
| 3
| 41\198<br>(25\198)
| 248.48<br>(151.51)
| 15/13<br>(12/11)
| [[Hemimist]]
|-
| 18
| 52\198<br>(3\198)
| 315.15<br>(18.18)
| 6/5<br>(99/98)
| [[Hemiennealimmal]]
|-
| 22
| 82\198<br>(1\198)
| 496.97<br>(6.06)
| 4/3<br>(385/384)
| [[Icosidillic]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]

Revision as of 10:10, 18 July 2021

The 198 equal divisions of the octave (198edo), or the 198(-tone) equal temperament (198tet, 198et) when viewed from a regular temperament perspective, divides the octave into 198 parts of 6.061 cents each.

Theory

198edo is contorted in the 7-limit, with the same tuning as 99edo, but makes for a good 11- and 13-limit system. Like 99, it tempers out 2401/2400, 4375/4374, 3136/3125, 5120/5103 and 6144/6125 in the 7-limit; in the 11-limit it tempers 3025/3024, 9801/9800 and 14641/14580; and in the 13-limit 352/351, 676/675, 847/845, 1001/1000, 1716/1715 and 2080/2079.

It is the optimal patent val for the rank-5 temperament tempering out 352/351, plus other temperaments of lower rank also tempering it out, such as hemimist, and namaka. It is distinctly consistent through the 15-odd-limit. It factors into 2 × 32 × 11, and has divisors 2, 3, 6, 9, 11, 18, 22, 33, 66 and 99.

Prime harmonics

Script error: No such module "primes_in_edo".

Intervals

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7.11 2401/2400, 3025/3024, 3136/3125, 4375/4374 [198 314 460 556 685]] -0.344 0.291 4.80
2.3.5.7.11.13 352/351, 676/675, 847/845, 1716/1715, 3025/3024 [198 314 460 556 685 733]] -0.372 0.273 4.50

Rank-2 temperaments

Note: temperaments supported by 99et are not included.

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
2 38\198 230.30 8/7 Hemigamera
2 47\198
(52\198)
315.15
(284.85)
6/5
(33/28)
Semiparakleismic
2 58\198
(41\198)
351.52
(248.48)
49/40
(15/13)
Semihemi
2 56\198
(43\198)
339.39
(260.61)
243/200
(64/55)
Hemiamity
2 74\198
(25\198)
448.48
(151.51)
35/27
(12/11)
Neusec
3 41\198
(25\198)
248.48
(151.51)
15/13
(12/11)
Hemimist
18 52\198
(3\198)
315.15
(18.18)
6/5
(99/98)
Hemiennealimmal
22 82\198
(1\198)
496.97
(6.06)
4/3
(385/384)
Icosidillic