212edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
m Prime intervals: the same prec is now estimated by EDO magnitude
+RTT table
Line 17: Line 17:
=== Prime intervals ===
=== Prime intervals ===
{{Primes in edo|212|columns=11}}
{{Primes in edo|212|columns=11}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5.7
| 2401/2400, 15625/15552, 32805/32768
| [{{val| 212 336 492 595 }}]
| +0.243
| 0.244
| 4.30
|-
| 2.3.5.7.11
| 385/384, 1375/1372, 6250/6237, 14641/14580
| [{{val| 212 336 492 595 733 }}]
| +0.325
| 0.273
| 4.82
|-
| 2.3.5.7.11.13
| 325/324, 385/384, 625/624, 1375/1372, 10648/10647
| [{{val| 212 336 492 595 733 784 }}]
| +0.396
| 0.296
| 5.23
|-
| 2.3.5.7.11.13.17
| 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647
| [{{val| 212 336 492 595 733 784 866 }}] (212g)
| +0.447
| 0.301
| 5.32
|-
| 2.3.5.7.11.13.17.19
| 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624
| [{{val| 212 336 492 595 733 784 866 900 }}] (212gh)
| +0.485
| 0.299
| 5.27
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]

Revision as of 09:49, 25 July 2021

212 equal temperament divides the octave into 212 equal parts of 5.660 cents each.

Theory

212 = 4 × 53, and it shares the 3rd, 5th, and 13th harmonics with 53edo, but the mapping differs for 7 and 11.

It tempers out the same commas (15625/15552, 32805/32768, 1600000/1594323, etc.) as 53edo in the 5-limit.

In the 7-limit, it tempers out 2401/2400 (breedsma), 390625/388962 (dimcomp comma), and 4802000/4782969 (canousma).

In the 11-limit, 385/384 (keenanisma), 1375/1372 (moctdel comma), 6250/6237 (liganellus comma), 9801/9800 (kalisma) and 14641/14580 (semicanousma).

In the 13-limit, 325/324 (marveltwin comma), 625/624 (tunbarsma), 676/675 (island comma), 1001/1000 (sinbadma), 1716/1715 (lummic comma), 2080/2079 (ibnsinma).

It is distinctly consistent in the 15-odd-limit with harmonics of 3 through 13 all tuned flat. It is the optimal patent val for 7- and 13-limit quadritikleismic temperament, the 7-limit rank-3 kleismic temperament, and the 13-limit rank-3 agni temperament. 212gh val shows some potential beyond 15-odd-limit. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone.

Prime intervals

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 15625/15552, 32805/32768 [212 336 492 595]] +0.243 0.244 4.30
2.3.5.7.11 385/384, 1375/1372, 6250/6237, 14641/14580 [212 336 492 595 733]] +0.325 0.273 4.82
2.3.5.7.11.13 325/324, 385/384, 625/624, 1375/1372, 10648/10647 [212 336 492 595 733 784]] +0.396 0.296 5.23
2.3.5.7.11.13.17 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 [212 336 492 595 733 784 866]] (212g) +0.447 0.301 5.32
2.3.5.7.11.13.17.19 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 [212 336 492 595 733 784 866 900]] (212gh) +0.485 0.299 5.27