145edo: Difference between revisions
m added just approximation |
+RTT table |
||
Line 1: | Line 1: | ||
'''145edo''' divides the octave into 145 equal parts of 8.276 cents each. | '''145edo''' divides the octave into 145 equal parts of 8.276 cents each. | ||
145et is the [[optimal patent val]] for 11-limit [[ | == Theory == | ||
145et is the [[optimal patent val]] for the 11-limit [[mystery]] temperament and the 11-limit rank-3 [[pele]] temperament. | |||
It tempers out [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the 11-limit; [[196/195]], [[352/351]] and [[364/363]] in the 13-limit; [[595/594]] in the 17-limit; [[343/342]] and [[476/475]] in the 19-limit. | It tempers out [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the 11-limit; [[196/195]], [[352/351]] and [[364/363]] in the 13-limit; [[595/594]] in the 17-limit; [[343/342]] and [[476/475]] in the 19-limit. | ||
Line 9: | Line 10: | ||
It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[minthmic chords]], because it tempers out 364/363 it allows [[gentle chords]], and because it tempers out 847/845 it allows the [[cuthbert triad]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery. | It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[minthmic chords]], because it tempers out 364/363 it allows [[gentle chords]], and because it tempers out 847/845 it allows the [[cuthbert triad]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery. | ||
{{Primes in edo|145|columns=9| | === Prime harmonics === | ||
{{Primes in edo|145|columns=9}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 1600000/1594323, {{monzo| 28 -3 -10 }} | |||
| [{{val| 145 230 337 }}] | |||
| -0.695 | |||
| 0.498 | |||
| 6.02 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 5120/5103, 50421/50000 | |||
| [{{val| 145 230 337 407 }}] | |||
| -0.472 | |||
| 0.578 | |||
| 6.99 | |||
|- | |||
| 2.3.5.7.11 | |||
| 441/440, 896/891, 3388/3375, 4375/4374 | |||
| [{{val| 145 230 337 407 502 }}] | |||
| -0.561 | |||
| 0.547 | |||
| 6.61 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 196/195, 352/351, 364/363, 676/675, 4375/4374 | |||
| [{{val| 145 230 337 407 502 537 }}] | |||
| -0.630 | |||
| 0.522 | |||
| 6.32 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155 | |||
| [{{val| 145 230 337 407 502 537 593 }}] | |||
| -0.632 | |||
| 0.484 | |||
| 5.85 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 2\145 | |||
| 16.55 | |||
| 100/99 | |||
| [[Quincy]] | |||
|- | |||
| 1 | |||
| 14\145 | |||
| 115.86 | |||
| 77/72 | |||
| [[Countermiracle]] | |||
|- | |||
| 1 | |||
| 39\145 | |||
| 322.76 | |||
| 3087/2560 | |||
| [[Senior]] / [[seniority]] | |||
|- | |||
| 1 | |||
| 41\145 | |||
| 339.31 | |||
| 243/200 | |||
| [[Amity]] | |||
|- | |||
| 29 | |||
| 60\145<br>(2\145) | |||
| 496.55<br>(16.55) | |||
| 4/3<br>(100/99) | |||
| [[Mystery]] | |||
|} | |||
== Music == | == Music == |
Revision as of 05:41, 13 July 2021
145edo divides the octave into 145 equal parts of 8.276 cents each.
Theory
145et is the optimal patent val for the 11-limit mystery temperament and the 11-limit rank-3 pele temperament.
It tempers out 1600000/1594323 in the 5-limit; 4375/4374 and 5120/5103 in the 7-limit; 441/440 and 896/891 in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit; 595/594 in the 17-limit; 343/342 and 476/475 in the 19-limit.
The 145c val provides a tuning for magic which is nearly identical to the POTE tuning.
It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows werckismic chords, because it tempers out 196/195 it allows mynucumic chords, because it tempers out 352/351 it allows minthmic chords, because it tempers out 364/363 it allows gentle chords, and because it tempers out 847/845 it allows the cuthbert triad, making it a very flexible harmonic system. The same is true of 232edo, the optimal patent val for 13-limit mystery.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 1600000/1594323, [28 -3 -10⟩ | [⟨145 230 337]] | -0.695 | 0.498 | 6.02 |
2.3.5.7 | 4375/4374, 5120/5103, 50421/50000 | [⟨145 230 337 407]] | -0.472 | 0.578 | 6.99 |
2.3.5.7.11 | 441/440, 896/891, 3388/3375, 4375/4374 | [⟨145 230 337 407 502]] | -0.561 | 0.547 | 6.61 |
2.3.5.7.11.13 | 196/195, 352/351, 364/363, 676/675, 4375/4374 | [⟨145 230 337 407 502 537]] | -0.630 | 0.522 | 6.32 |
2.3.5.7.11.13.17 | 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155 | [⟨145 230 337 407 502 537 593]] | -0.632 | 0.484 | 5.85 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 2\145 | 16.55 | 100/99 | Quincy |
1 | 14\145 | 115.86 | 77/72 | Countermiracle |
1 | 39\145 | 322.76 | 3087/2560 | Senior / seniority |
1 | 41\145 | 339.31 | 243/200 | Amity |
29 | 60\145 (2\145) |
496.55 (16.55) |
4/3 (100/99) |
Mystery |