229edo: Difference between revisions
No edit summary Tags: Mobile edit Mobile web edit |
Expansion: sectioning, prime error table, 19-limit interpretation, rtt tables |
||
Line 1: | Line 1: | ||
''' | The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of 5.2402 [[cent]]s each. | ||
== Theory == | |||
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably supporting [[hemiwürschmidt]], [[newt]], and [[trident]]. | |||
229edo is the 50th [[prime EDO]]. | |||
=== Prime harmonics === | |||
{{Primes in edo|229}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal 8ve <br>stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 363 -229 }} | |||
| [{{val| 229 363 }}] | |||
| -0.072 | |||
| 0.072 | |||
| 1.38 | |||
|- | |||
| 2.3.5 | |||
| 393216/390625, {{monzo| 39 -29 3 }} | |||
| [{{val| 229 363 532 }}] | |||
| -0.258 | |||
| 0.269 | |||
| 5.13 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 3136/3125, 14348907/14336000 | |||
| [{{val| 229 363 532 643 }}] | |||
| -0.247 | |||
| 0.233 | |||
| 4.46 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 3136/3125, 8019/8000 | |||
| [{{val| 229 363 532 643 792 }}] | |||
| -0.134 | |||
| 0.308 | |||
| 5.87 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 351/350, 2080/2079, 3025/3024, 3136/3125, 4096/4095 | |||
| [{{val| 229 363 532 643 792 847 }}] | |||
| -0.017 | |||
| 0.384 | |||
| 7.32 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095 | |||
| [{{val| 229 363 532 643 792 847 936 }}] | |||
| -0.009 | |||
| 0.356 | |||
| 6.79 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | |||
| [{{val| 229 363 532 643 792 847 936 973 }}] | |||
| -0.043 | |||
| 0.344 | |||
| 6.57 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 19\229 | |||
| 99.56 | |||
| 18/17 | |||
| [[Quintagar]] / [[quintasandra]] / [[quintasandroid]] | |||
|- | |||
| 1 | |||
| 37\229 | |||
| 193.87 | |||
| 28/25 | |||
| [[Didacus]] / [[hemiwürschmidt]] | |||
|- | |||
| 1 | |||
| 67\229 | |||
| 351.09 | |||
| 49/40 | |||
| [[Newt]] | |||
|- | |||
| 1 | |||
| 74\229 | |||
| 387.77 | |||
| 5/4 | |||
| [[Würschmidt]] | |||
|- | |||
| 1 | |||
| 95\229 | |||
| 497.82 | |||
| 4/3 | |||
| [[Gary]] | |||
|- | |||
| 1 | |||
| 75\229 | |||
| 503.06 | |||
| 147/110 | |||
| [[Quadrawürschmidt]] | |||
|- | |||
| 1 | |||
| 108\229 | |||
| 565.94 | |||
| 18/13 | |||
| [[Tricot]] / [[trident]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Prime EDO]] | [[Category:Prime EDO]] | ||
[[Category:Würschmidt]] | |||
[[Category:Hemiwürschmidt]] |
Revision as of 07:05, 8 August 2021
The 229 equal divisions of the octave (229edo), or the 229(-tone) equal temperament (229tet, 229et), is the equal division of the octave into 229 parts of 5.2402 cents each.
Theory
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out 393216/390625 (würschmidt comma) and [39 -29 3⟩ (tricot comma) in the 5-limit; 2401/2400, 3136/3125, 6144/6125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, 14641/14580 and 15488/15435 in the 11-limit, and using the patent val, 351/350, 2080/2079, and 4096/4095 in the 13-limit, notably supporting hemiwürschmidt, newt, and trident.
229edo is the 50th prime EDO.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [363 -229⟩ | [⟨229 363]] | -0.072 | 0.072 | 1.38 |
2.3.5 | 393216/390625, [39 -29 3⟩ | [⟨229 363 532]] | -0.258 | 0.269 | 5.13 |
2.3.5.7 | 2401/2400, 3136/3125, 14348907/14336000 | [⟨229 363 532 643]] | -0.247 | 0.233 | 4.46 |
2.3.5.7.11 | 2401/2400, 3025/3024, 3136/3125, 8019/8000 | [⟨229 363 532 643 792]] | -0.134 | 0.308 | 5.87 |
2.3.5.7.11.13 | 351/350, 2080/2079, 3025/3024, 3136/3125, 4096/4095 | [⟨229 363 532 643 792 847]] | -0.017 | 0.384 | 7.32 |
2.3.5.7.11.13.17 | 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095 | [⟨229 363 532 643 792 847 936]] | -0.009 | 0.356 | 6.79 |
2.3.5.7.11.13.17.19 | 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | [⟨229 363 532 643 792 847 936 973]] | -0.043 | 0.344 | 6.57 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 19\229 | 99.56 | 18/17 | Quintagar / quintasandra / quintasandroid |
1 | 37\229 | 193.87 | 28/25 | Didacus / hemiwürschmidt |
1 | 67\229 | 351.09 | 49/40 | Newt |
1 | 74\229 | 387.77 | 5/4 | Würschmidt |
1 | 95\229 | 497.82 | 4/3 | Gary |
1 | 75\229 | 503.06 | 147/110 | Quadrawürschmidt |
1 | 108\229 | 565.94 | 18/13 | Tricot / trident |