Würschmidt family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Seems h1 titles are still needed for clarity when there are so many layers of extensions (review this plz)
m Corrections
Line 4: Line 4:
Comma: 393216/390625
Comma: 393216/390625


[[POTE generator]]: 387.799
[[POTE generator]]: ~5/4 = 387.799


Map: [<1 7 3|, <0 -8 -1|]
Map: [<1 7 3|, <0 -8 -1|]
Line 26: Line 26:
Commas: [[225/224]], 8748/8575
Commas: [[225/224]], 8748/8575


[[POTE generator]]: 387.383
[[POTE generator]]: ~5/4 = 387.383


Map: [<1 7 3 15|, <0 -8 -1 -18|]
Map: [<1 7 3 15|, <0 -8 -1 -18|]


EDOs: {{EDOs| 31, 96, 127, 28bd, 412bd }}
EDOs: {{EDOs| 31, 96, 127, 285bd, 412bbdd }}


Badness: 0.0508
Badness: 0.0508
Line 76: Line 76:
Commas: [[126/125]], 33075/32768
Commas: [[126/125]], 33075/32768


[[POTE generator]]: 387.392
[[POTE generator]]: ~5/4 = 387.392


Map: [<1 7 3 -6|, <0 -8 -1 13|]
Map: [<1 7 3 -6|, <0 -8 -1 13|]
Line 102: Line 102:
Commas: 4375/4374, 393216/390625
Commas: 4375/4374, 393216/390625


[[POTE generator]]: 387.881
[[POTE generator]]: ~5/4 = 387.881


Map: [<1 7 3 38|, <0 -8 -1 -52|]
Map: [<1 7 3 38|, <0 -8 -1 -52|]


EDOs: {{EDOs| 31, 34, 65, 99 }}
EDOs: {{EDOs| 31dd, 34d, 65, 99 }}


= Hemiwürschmidt =
= Hemiwürschmidt =
Line 120: Line 120:
<<16 2 5 -34 -37 6||
<<16 2 5 -34 -37 6||


EDOs: {{EDOs| 6, 31, 37, 68, 99, 229, 328, 557c, 885c }}
EDOs: {{EDOs| 31, 68, 99, 229, 328, 557c, 885cc }}


Badness: 0.0203
Badness: 0.0203
Line 168: Line 168:
Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|]
Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|]


EDOs: {{EDOs| 6, 31, 68, 99, 130e, 229e }}
EDOs: {{EDOs| 31, 68, 99, 130e, 229e }}


Badness: 0.0293
Badness: 0.0293
Line 180: Line 180:
Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|]
Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|]


EDOs: {{EDOs| 6, 31, 68, 99f, 167ef }}
EDOs: {{EDOs| 31, 68, 99f, 167ef }}


Badness: 0.0284
Badness: 0.0284

Revision as of 11:59, 8 November 2020

The 5-limit parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its monzo is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note MOS all possibilities.

Würschmidt

Comma: 393216/390625

POTE generator: ~5/4 = 387.799

Map: [<1 7 3|, <0 -8 -1|]

EDOs: 31, 34, 65, 99, 164, 721c, 885c

Music

Ancient Stardust play by Chris Vaisvil; Würschmidt[13] in 5-limit minimax tuning

Extrospection by Jake Freivald; Würschmidt[16] tuned in 31et.

Seven limit children

The second comma of the normal comma list defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>.

7-limit

Würschmidt, aside from the commas listed above, also tempers out 225/224. 31edo or 127edo can be used as tunings. Würschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. 127edo is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.

Commas: 225/224, 8748/8575

POTE generator: ~5/4 = 387.383

Map: [<1 7 3 15|, <0 -8 -1 -18|]

EDOs: 31, 96, 127, 285bd, 412bbdd

Badness: 0.0508

11-limit

Commas: 99/98, 176/175, 243/242

POTE generator: ~5/4 = 387.447

Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|]

EDOs: 31, 65d, 96, 127, 223d

Badness: 0.0244

13-limit

Commas: 99/98, 144/143, 176/175, 275/273

POTE generator: ~5/4 = 387.626

Map: [<1 7 3 15 17 1|, <0 -8 -1 -18 -20 4|]

EDOs: 31, 65d, 161df

Badness: 0.0236

Worseschmidt

Commas: 66/65, 99/98, 105/104, 243/242

POTE generator: ~5/4 = 387.099

Map: [<1 7 3 15 17 22|, <0 -8 -1 -18 -20 -27|]

EDOs: 31

Badness: 0.0344

Worschmidt

Worschmidt tempers out 126/125 rather than 225/224, and can use 31edo, 34edo, or 127edo as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.

Commas: 126/125, 33075/32768

POTE generator: ~5/4 = 387.392

Map: [<1 7 3 -6|, <0 -8 -1 13|]

EDOs: 31, 65, 96d, 127d

Badness: 0.0646

11-limit

Commas: 126/125, 243/242, 385/384

POTE generator: ~5/4 = 387.407

Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|]

EDOs: 31, 65, 96d, 127d

Badness: 0.0334

Whirrschmidt

99edo is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie.

Commas: 4375/4374, 393216/390625

POTE generator: ~5/4 = 387.881

Map: [<1 7 3 38|, <0 -8 -1 -52|]

EDOs: 31dd, 34d, 65, 99

Hemiwürschmidt

Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. 68edo, 99edo and 130edo can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28...

Commas: 2401/2400, 3136/3125

POTE generator: ~28/25 = 193.898

Map: [<1 15 4 7|, <0 -16 -2 -5|]

<<16 2 5 -34 -37 6||

EDOs: 31, 68, 99, 229, 328, 557c, 885cc

Badness: 0.0203

11-limit

Commas: 243/242, 441/440, 3136/3125

POTE generator: ~28/25 = 193.840

Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|]

EDOs: 31, 99e, 130, 650ce, 811ce

Badness: 0.0211

13-limit

Commas: 243/242, 351/350, 441/440, 3584/3575

POTE generator: ~28/25 = 193.840

Map: [<1 15 4 7 37 -29|, <0 -16 -2 -5 -40 39|]

EDOs: 31, 99e, 130, 291, 421e, 551ce

Badness: 0.0231

Hemithir

Commas: 121/120, 176/175, 196/195, 275/273

POTE generator: ~28/25 = 193.918

Map: [<1 15 4 7 37 -3|, <0 -16 -2 -5 -40 8|]

EDOs: 31, 68e, 99ef

Badness: 0.0312

Hemiwur

Commas: 121/120, 176/175, 1375/1372

POTE generator: ~28/25 = 193.884

Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|]

EDOs: 31, 68, 99, 130e, 229e

Badness: 0.0293

13-limit

Commas: 121/120, 176/175, 196/195, 275/273

POTE generator: ~28/25 = 194.004

Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|]

EDOs: 31, 68, 99f, 167ef

Badness: 0.0284

Hemiwar

Commas: 66/65, 105/104, 121/120, 1375/1372

POTE generator: ~28/25 = 193.698

Map: [<1 15 4 7 11 23|, <0 -16 -2 -5 -9 -23|]

EDOs: 31

Badness: 0.0449

Relationships to other temperaments

around 775.489 which is approximately

2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to skwares as a 2.3.7.11 temperament.