69edo: Difference between revisions
Dave Keenan (talk | contribs) →Sagittal notation: Moved the explanation of ≈ to the end of the section. |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652 | 69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652{{c}}. Such a fifth is closer to [[2/7-comma meantone]] than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. | ||
69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | 69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | ||
In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the {{nowrap|31 & 69}} variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | ||
The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is 22 & 69, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is {{nowrap|22 & 69}}, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 26: | Line 25: | ||
! Error (abs, [[cent|¢]]) | ! Error (abs, [[cent|¢]]) | ||
|- | |- | ||
|0 | | 0 | ||
|Natural Unison, 1 | | Natural Unison, 1 | ||
|0.000 | | 0.000 | ||
|[[1/1]] | | [[1/1]] | ||
|0.000 | | 0.000 | ||
|- | |- | ||
|1 | | 1 | ||
|Ptolemy's comma | | Ptolemy's comma | ||
|17.391 | | 17.391 | ||
|[[100/99]] | | [[100/99]] | ||
| | | −0.008 | ||
|- | |- | ||
|2 | | 2 | ||
|Jubilisma, lesser septimal sixth tone | | Jubilisma, lesser septimal sixth tone | ||
|34.783 | | 34.783 | ||
|[[50/49]], [[101/99]] | | [[50/49]], [[101/99]] | ||
| | | −0.193, 0.157 | ||
|- | |- | ||
|3 | | 3 | ||
|lesser septendecimal quartertone, _____ | | lesser septendecimal quartertone, _____ | ||
|52.174 | | 52.174 | ||
|[[34/33]], [[101/98]] | | [[34/33]], [[101/98]] | ||
| 0.491, | | 0.491, −0.028 | ||
|- | |- | ||
|4 | | 4 | ||
|_____ | | _____ | ||
|69.565 | | 69.565 | ||
|[[76/73]] | | [[76/73]] | ||
| | | −0.158 | ||
|- | |- | ||
|5 | | 5 | ||
|Small undevicesimal semitone | | Small undevicesimal semitone | ||
|86.957 | | 86.957 | ||
|[[20/19]] | | [[20/19]] | ||
| | | −1.844 | ||
|- | |- | ||
|6 | | 6 | ||
|Large septendecimal semitone | | Large septendecimal semitone | ||
|104.348 | | 104.348 | ||
|[[17/16]] | | [[17/16]] | ||
| | | −0.608 | ||
|- | |- | ||
|7 | | 7 | ||
|Septimal diatonic semitone | | Septimal diatonic semitone | ||
|121.739 | | 121.739 | ||
|[[15/14]] | | [[15/14]] | ||
|2.296 | | 2.296 | ||
|- | |- | ||
|8 | | 8 | ||
|Tridecimal neutral second | | Tridecimal neutral second | ||
|139.130 | | 139.130 | ||
|[[13/12]] | | [[13/12]] | ||
|0.558 | | 0.558 | ||
|- | |- | ||
|9 | | 9 | ||
|Vicesimotertial neutral second | | Vicesimotertial neutral second | ||
|156.522 | | 156.522 | ||
|[[23/21]] | | [[23/21]] | ||
| | | −0.972 | ||
|- | |- | ||
|10 | | 10 | ||
| Undevicesimal large neutral second, undevicesimal whole tone | | Undevicesimal large neutral second, undevicesimal whole tone | ||
|173.913 | | 173.913 | ||
|[[21/19]] | | [[21/19]] | ||
|0.645 | | 0.645 | ||
|- | |- | ||
|11 | | 11 | ||
|Quasi-meantone | | Quasi-meantone | ||
|191.304 | | 191.304 | ||
|[[19/17]] | | [[19/17]] | ||
| | | −1.253 | ||
|- | |- | ||
|12 | | 12 | ||
|Whole tone | | Whole tone | ||
|208.696 | | 208.696 | ||
|[[9/8]] | | [[9/8]] | ||
|4.786 | | 4.786 | ||
|- | |- | ||
|13 | | 13 | ||
|Septimal whole tone | | Septimal whole tone | ||
|226.087 | | 226.087 | ||
|[[8/7]] | | [[8/7]] | ||
| | | −5.087 | ||
|- | |- | ||
|14 | | 14 | ||
|Vicesimotertial semifourth | | Vicesimotertial semifourth | ||
|243.478 | | 243.478 | ||
|[[23/20]] | | [[23/20]] | ||
|1.518 | | 1.518 | ||
|- | |- | ||
|15 | | 15 | ||
|Subminor third, undetricesimal subminor third | | Subminor third, undetricesimal subminor third | ||
|260.870 | | 260.870 | ||
|[[7/6]], [[29/25]] | | [[7/6]], [[29/25]] | ||
| | | −6.001, 3.920 | ||
|- | |- | ||
|16 | | 16 | ||
| Vicesimotertial subminor third | | Vicesimotertial subminor third | ||
|278.261 | | 278.261 | ||
|[[27/23]] | | [[27/23]] | ||
|0.670 | | 0.670 | ||
|- | |- | ||
|17 | | 17 | ||
|Pythagorean minor third | | Pythagorean minor third | ||
|295.652 | | 295.652 | ||
|[[32/27]] | | [[32/27]] | ||
|1.517 | | 1.517 | ||
|- | |- | ||
|18 | | 18 | ||
|Classic minor third | | Classic minor third | ||
|313.043 | | 313.043 | ||
|[[6/5]] | | [[6/5]] | ||
| | | −2.598 | ||
|- | |- | ||
|19 | | 19 | ||
|Vicesimotertial supraminor third | | Vicesimotertial supraminor third | ||
|330.435 | | 330.435 | ||
|[[23/19]] | | [[23/19]] | ||
| | | −0.327 | ||
|- | |- | ||
|20 | | 20 | ||
|Undecimal neutral third | | Undecimal neutral third | ||
|347.826 | | 347.826 | ||
|[[11/9]] | | [[11/9]] | ||
|0.418 | | 0.418 | ||
|- | |- | ||
|21 | | 21 | ||
|Septendecimal submajor third | | Septendecimal submajor third | ||
|365.217 | | 365.217 | ||
|[[21/17]] | | [[21/17]] | ||
| | | −0.608 | ||
|- | |- | ||
|22 | | 22 | ||
|Classic major third | | Classic major third | ||
|382.609 | | 382.609 | ||
|[[5/4]] | | [[5/4]] | ||
| | | −3.705 | ||
|- | |- | ||
|23 | | 23 | ||
| Undetricesimal major third, Septendecimal major third | | Undetricesimal major third, Septendecimal major third | ||
|400.000 | | 400.000 | ||
|[[29/23]], [[34/27]] | | [[29/23]], [[34/27]] | ||
| | | −1.303, 0.910 | ||
|- | |- | ||
|24 | | 24 | ||
|Undecimal major third | | Undecimal major third | ||
|417.391 | | 417.391 | ||
|[[14/11]] | | [[14/11]] | ||
| | | −0.117 | ||
|- | |- | ||
|25 | | 25 | ||
|Supermajor third | | Supermajor third | ||
|434.783 | | 434.783 | ||
|[[9/7]] | | [[9/7]] | ||
| | | −0.301 | ||
|- | |- | ||
|26 | | 26 | ||
|Barbados third | | Barbados third | ||
|452.174 | | 452.174 | ||
|[[13/10]] | | [[13/10]] | ||
| | | −2.040 | ||
|- | |- | ||
|27 | | 27 | ||
|Septimal sub-fourth | | Septimal sub-fourth | ||
|469.565 | | 469.565 | ||
|[[21/16]] | | [[21/16]] | ||
| | | −1.216 | ||
|- | |- | ||
|28 | | 28 | ||
|_____ | | _____ | ||
|486.957 | | 486.957 | ||
|[[53/40]] | | [[53/40]] | ||
| | | −0.234 | ||
|- | |- | ||
|29 | | 29 | ||
|Just perfect fourth | | Just perfect fourth | ||
|504.348 | | 504.348 | ||
|[[4/3]] | | [[4/3]] | ||
|6.303 | | 6.303 | ||
|- | |- | ||
|30 | | 30 | ||
|Vicesimotertial acute fourth | | Vicesimotertial acute fourth | ||
|521.739 | | 521.739 | ||
|[[23/17]] | | [[23/17]] | ||
| | | −1.580 | ||
|- | |- | ||
|31 | | 31 | ||
|Undecimal augmented fourth | | Undecimal augmented fourth | ||
|539.130 | | 539.130 | ||
|[[15/11]] | | [[15/11]] | ||
|2.180 | | 2.180 | ||
|- | |- | ||
|32 | | 32 | ||
|Undecimal superfourth, undetricesimal superfourth | | Undecimal superfourth, undetricesimal superfourth | ||
|556.522 | | 556.522 | ||
|[[11/8]], [[29/21]] | | [[11/8]], [[29/21]] | ||
|5.204, | | 5.204, −2.275 | ||
|- | |- | ||
|33 | | 33 | ||
|Narrow tritone, classic augmented fourth | | Narrow tritone, classic augmented fourth | ||
|573.913 | | 573.913 | ||
|[[7/5]], [[25/18]] | | [[7/5]], [[25/18]] | ||
| | | −8.600, 5.196 | ||
|- | |- | ||
|34 | | 34 | ||
|_____ | | _____ | ||
|591.304 | | 591.304 | ||
|[[31/22]] | | [[31/22]] | ||
| | | −2.413 | ||
|- | |- | ||
|35 | | 35 | ||
|High tritone, undevicesimal tritone | | High tritone, undevicesimal tritone | ||
|608.696 | | 608.696 | ||
|[[10/7]], [[27/19]] | | [[10/7]], [[27/19]] | ||
| | | −8.792, 0.344 | ||
|- | |- | ||
|36 | | 36 | ||
|_____ | | _____ | ||
|626.087 | | 626.087 | ||
|[[33/23]] | | [[33/23]] | ||
|1.088 | | 1.088 | ||
|- | |- | ||
|37 | | 37 | ||
| Undetricesimal tritone | | Undetricesimal tritone | ||
|643.478 | | 643.478 | ||
|[[29/20]] | | [[29/20]] | ||
|0.215 | | 0.215 | ||
|- | |- | ||
|38 | | 38 | ||
| Undevicesimal diminished fifth, undecimal diminished fifth | | Undevicesimal diminished fifth, undecimal diminished fifth | ||
|660.870 | | 660.870 | ||
|[[19/13]], [[22/15]] | | [[19/13]], [[22/15]] | ||
|3.884, | | 3.884, −2.180 | ||
|- | |- | ||
|39 | | 39 | ||
|Vicesimotertial grave fifth, _____ | | Vicesimotertial grave fifth, _____ | ||
|678.261 | | 678.261 | ||
|[[34/23]], [[37/25]] | | [[34/23]], [[37/25]] | ||
|1.580, | | 1.580, −0.456 | ||
|- | |- | ||
|40 | | 40 | ||
|Just perfect fifth | | Just perfect fifth | ||
|695.652 | | 695.652 | ||
|[[3/2]] | | [[3/2]] | ||
| | | −6.303 | ||
|- | |- | ||
|41 | | 41 | ||
|_____ | | _____ | ||
|713.043 | | 713.043 | ||
|[[80/53]] | | [[80/53]] | ||
|0.234 | | 0.234 | ||
|- | |- | ||
|42 | | 42 | ||
|Super-fifth, undetricesimal super-fifth | | Super-fifth, undetricesimal super-fifth | ||
|730.435 | | 730.435 | ||
|[[32/21]], [[29/19]] | | [[32/21]], [[29/19]] | ||
|1.216, | | 1.216, −1.630 | ||
|- | |- | ||
|43 | | 43 | ||
|Septendecimal subminor sixth | | Septendecimal subminor sixth | ||
|747.826 | | 747.826 | ||
|[[17/11]] | | [[17/11]] | ||
| | | −5.811 | ||
|- | |- | ||
|44 | | 44 | ||
|Subminor sixth | | Subminor sixth | ||
|765.217 | | 765.217 | ||
|[[14/9]] | | [[14/9]] | ||
|0.301 | | 0.301 | ||
|- | |- | ||
|45 | | 45 | ||
|Undecimal minor sixth | | Undecimal minor sixth | ||
|782.609 | | 782.609 | ||
|[[11/7]] | | [[11/7]] | ||
|0.117 | | 0.117 | ||
|- | |- | ||
|46 | | 46 | ||
| Septendecimal subminor sixth | | Septendecimal subminor sixth | ||
|800.000 | | 800.000 | ||
|[[27/17]] | | [[27/17]] | ||
| | | −0.910 | ||
|- | |- | ||
|47 | | 47 | ||
|Classic minor sixth | | Classic minor sixth | ||
|817.391 | | 817.391 | ||
|[[8/5]] | | [[8/5]] | ||
|3.705 | | 3.705 | ||
|- | |- | ||
|48 | | 48 | ||
|Septendecimal supraminor sixth | | Septendecimal supraminor sixth | ||
|834.783 | | 834.783 | ||
|[[34/21]] | | [[34/21]] | ||
|0.608 | | 0.608 | ||
|- | |- | ||
|49 | | 49 | ||
|Undecimal neutral sixth | | Undecimal neutral sixth | ||
|852.174 | | 852.174 | ||
|[[18/11]] | | [[18/11]] | ||
| | | −0.418 | ||
|- | |- | ||
|50 | | 50 | ||
|Vicesimotertial submajor sixth | | Vicesimotertial submajor sixth | ||
|869.565 | | 869.565 | ||
|[[38/23]] | | [[38/23]] | ||
|0.327 | | 0.327 | ||
|- | |- | ||
|51 | | 51 | ||
|Classic major sixth | | Classic major sixth | ||
|886.957 | | 886.957 | ||
|[[5/3]] | | [[5/3]] | ||
|2.598 | | 2.598 | ||
|- | |- | ||
|52 | | 52 | ||
|Pythagorean major sixth | | Pythagorean major sixth | ||
|904.348 | | 904.348 | ||
|[[27/16]] | | [[27/16]] | ||
| | | −1.517 | ||
|- | |- | ||
|53 | | 53 | ||
|Septendecimal major sixth, undetricesimal major sixth | | Septendecimal major sixth, undetricesimal major sixth | ||
|921.739 | | 921.739 | ||
|[[17/10]], [[29/17]] | | [[17/10]], [[29/17]] | ||
|3.097, | | 3.097, −2.883 | ||
|- | |- | ||
|54 | | 54 | ||
|Supermajor sixth, undetricesimal supermajor sixth | | Supermajor sixth, undetricesimal supermajor sixth | ||
|939.130 | | 939.130 | ||
|[[12/7]], [[50/29]] | | [[12/7]], [[50/29]] | ||
|6.001, | | 6.001, −3.920 | ||
|- | |- | ||
|55 | | 55 | ||
|Vicesimotertial supermajor sixth | | Vicesimotertial supermajor sixth | ||
|956.522 | | 956.522 | ||
|[[40/23]] | | [[40/23]] | ||
| | | −1.518 | ||
|- | |- | ||
|56 | | 56 | ||
|Harmonic seventh | | Harmonic seventh | ||
|973.913 | | 973.913 | ||
|[[7/4]] | | [[7/4]] | ||
|5.087 | | 5.087 | ||
|- | |- | ||
|57 | | 57 | ||
|Pythagorean minor seventh | | Pythagorean minor seventh | ||
|991.304 | | 991.304 | ||
|[[16/9]] | | [[16/9]] | ||
| | | −4.786 | ||
|- | |- | ||
|58 | | 58 | ||
|Quasi-meantone minor seventh | | Quasi-meantone minor seventh | ||
|1008.696 | | 1008.696 | ||
|[[34/19]] | | [[34/19]] | ||
|1.253 | | 1.253 | ||
|- | |- | ||
|59 | | 59 | ||
|Minor neutral undevicesimal seventh | | Minor neutral undevicesimal seventh | ||
|1026.087 | | 1026.087 | ||
|[[38/21]] | | [[38/21]] | ||
| | | −0.645 | ||
|- | |- | ||
|60 | | 60 | ||
|Vicesimotertial neutral seventh | | Vicesimotertial neutral seventh | ||
|1043.478 | | 1043.478 | ||
|[[42/23]] | | [[42/23]] | ||
|0.972 | | 0.972 | ||
|- | |- | ||
|61 | | 61 | ||
|Tridecimal neutral seventh | | Tridecimal neutral seventh | ||
|1060.870 | | 1060.870 | ||
|[[24/13]] | | [[24/13]] | ||
| | | −0.558 | ||
|- | |- | ||
|62 | | 62 | ||
|Septimal diatonic major seventh | | Septimal diatonic major seventh | ||
|1078.261 | | 1078.261 | ||
|[[28/15]] | | [[28/15]] | ||
| | | −2.296 | ||
|- | |- | ||
|63 | | 63 | ||
|Small septendecimal major seventh | | Small septendecimal major seventh | ||
|1095.652 | | 1095.652 | ||
|[[32/17]] | | [[32/17]] | ||
|0.608 | | 0.608 | ||
|- | |- | ||
|64 | | 64 | ||
|Small undevicesimal semitone | | Small undevicesimal semitone | ||
|1113.043 | | 1113.043 | ||
|[[20/19]] | | [[20/19]] | ||
|1.844 | | 1.844 | ||
|- | |- | ||
|65 | | 65 | ||
|_____ | | _____ | ||
|1130.435 | | 1130.435 | ||
|[[73/38]] | | [[73/38]] | ||
|0.158 | | 0.158 | ||
|- | |- | ||
|66 | | 66 | ||
| Septendecimal supermajor seventh | | Septendecimal supermajor seventh | ||
|1147.826 | | 1147.826 | ||
|[[33/17]] | | [[33/17]] | ||
| | | −0.491 | ||
|- | |- | ||
|67 | | 67 | ||
|_____ | | _____ | ||
|1165.217 | | 1165.217 | ||
|[[49/25]] | | [[49/25]] | ||
| | | −0.193 | ||
|- | |- | ||
|68 | | 68 | ||
|_____ | | _____ | ||
|1182.609 | | 1182.609 | ||
|[[99/50]] | | [[99/50]] | ||
|0.008 | | 0.008 | ||
|- | |- | ||
|69 | | 69 | ||
|Octave, 8 | | Octave, 8 | ||
|1200.000 | | 1200.000 | ||
|[[2/1]] | | [[2/1]] | ||
|0.000 | | 0.000 | ||
|} | |} | ||
<nowiki>* | <nowiki />* Some simpler ratios listed | ||
== Notation == | == Notation == | ||
=== Ups and downs notation === | |||
Using [[Helmholtz–Ellis]] accidentals, 69edo can also be notated using [[ups and downs notation]] along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals: | |||
{{Sharpness-sharp4}} | |||
Here, a sharp raises by four steps, and a flat lowers by four steps, so arrows can be used to fill in the gap. | |||
===Sagittal notation=== | === Sagittal notation === | ||
This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | ||
==== Evo flavor ==== | |||
<imagemap> | <imagemap> | ||
File:69-EDO_Evo_Sagittal.svg | File:69-EDO_Evo_Sagittal.svg | ||
Line 464: | Line 467: | ||
</imagemap> | </imagemap> | ||
====Revo flavor==== | ==== Revo flavor ==== | ||
<imagemap> | <imagemap> | ||
File:69-EDO_Revo_Sagittal.svg | File:69-EDO_Revo_Sagittal.svg | ||
Line 476: | Line 478: | ||
</imagemap> | </imagemap> | ||
====Evo-SZ flavor==== | ==== Evo-SZ flavor ==== | ||
<imagemap> | <imagemap> | ||
File:69-EDO_Evo-SZ_Sagittal.svg | File:69-EDO_Evo-SZ_Sagittal.svg | ||
Line 492: | Line 493: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] |
Revision as of 15:54, 20 February 2025
← 68edo | 69edo | 70edo → |
69 equal divisions of the octave (abbreviated 69edo or 69ed2), also called 69-tone equal temperament (69tet) or 69 equal temperament (69et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 69 equal parts of about 17.4 ¢ each. Each step represents a frequency ratio of 21/69, or the 69th root of 2.
Theory
69edo has been called "the love-child of 23edo and quarter-comma meantone". As a meantone system, it is on the flat side, with a fifth of 695.652 ¢. Such a fifth is closer to 2/7-comma meantone than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes.
69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 lithium scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a tcherepnin scale instead of traditional diatonic.
In the 7-limit it is a mohajira system, tempering out 6144/6125, but not a septimal meantone system, as 126/125 maps to one step. In the 11-limit it tempers out 99/98, and supports the 31 & 69 variant of mohajira, identical to the standard 11-limit mohajira in 31edo but not in 69.
The concoctic scale for 69edo is 22\69, and the corresponding rank two temperament is 22 & 69, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.30 | -3.71 | +5.09 | +4.79 | +5.20 | -5.75 | +7.38 | -0.61 | -1.86 | -1.22 | -2.19 |
Relative (%) | -36.2 | -21.3 | +29.3 | +27.5 | +29.9 | -33.0 | +42.5 | -3.5 | -10.7 | -7.0 | -12.6 | |
Steps (reduced) |
109 (40) |
160 (22) |
194 (56) |
219 (12) |
239 (32) |
255 (48) |
270 (63) |
282 (6) |
293 (17) |
303 (27) |
312 (36) |
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation (Dual flat fifth 40\69) |
Ups and downs notation (Dual sharp fifth 41\69) |
---|---|---|---|---|
0 | 0 | 1/1 | D | D |
1 | 17.4 | ^D, vvE♭♭ | ^D, vE♭ | |
2 | 34.8 | ^^D, vE♭♭ | ^^D, E♭ | |
3 | 52.2 | 32/31, 33/32, 34/33, 35/34 | vD♯, E♭♭ | ^3D, ^E♭ |
4 | 69.6 | 25/24, 26/25 | D♯, ^E♭♭ | ^4D, ^^E♭ |
5 | 87 | 20/19, 21/20 | ^D♯, vvE♭ | ^5D, ^3E♭ |
6 | 104.3 | 17/16, 35/33 | ^^D♯, vE♭ | v5D♯, ^4E♭ |
7 | 121.7 | vD𝄪, E♭ | v4D♯, ^5E♭ | |
8 | 139.1 | 13/12 | D𝄪, ^E♭ | v3D♯, v5E |
9 | 156.5 | 23/21, 34/31, 35/32 | ^D𝄪, vvE | vvD♯, v4E |
10 | 173.9 | 21/19, 31/28, 32/29 | ^^D𝄪, vE | vD♯, v3E |
11 | 191.3 | 19/17, 29/26 | E | D♯, vvE |
12 | 208.7 | 26/23, 35/31 | ^E, vvF♭ | ^D♯, vE |
13 | 226.1 | 33/29 | ^^E, vF♭ | E |
14 | 243.5 | 23/20 | vE♯, F♭ | ^E, vF |
15 | 260.9 | E♯, ^F♭ | F | |
16 | 278.3 | 20/17, 34/29 | ^E♯, vvF | ^F, vG♭ |
17 | 295.7 | 19/16 | ^^E♯, vF | ^^F, G♭ |
18 | 313 | 6/5 | F | ^3F, ^G♭ |
19 | 330.4 | 23/19, 29/24 | ^F, vvG♭♭ | ^4F, ^^G♭ |
20 | 347.8 | ^^F, vG♭♭ | ^5F, ^3G♭ | |
21 | 365.2 | 21/17, 37/30 | vF♯, G♭♭ | v5F♯, ^4G♭ |
22 | 382.6 | 5/4 | F♯, ^G♭♭ | v4F♯, ^5G♭ |
23 | 400 | 29/23 | ^F♯, vvG♭ | v3F♯, v5G |
24 | 417.4 | 14/11 | ^^F♯, vG♭ | vvF♯, v4G |
25 | 434.8 | vF𝄪, G♭ | vF♯, v3G | |
26 | 452.2 | 13/10 | F𝄪, ^G♭ | F♯, vvG |
27 | 469.6 | 21/16 | ^F𝄪, vvG | ^F♯, vG |
28 | 487 | ^^F𝄪, vG | G | |
29 | 504.3 | G | ^G, vA♭ | |
30 | 521.7 | 23/17 | ^G, vvA♭♭ | ^^G, A♭ |
31 | 539.1 | ^^G, vA♭♭ | ^3G, ^A♭ | |
32 | 556.5 | 29/21 | vG♯, A♭♭ | ^4G, ^^A♭ |
33 | 573.9 | 32/23 | G♯, ^A♭♭ | ^5G, ^3A♭ |
34 | 591.3 | 31/22 | ^G♯, vvA♭ | v5G♯, ^4A♭ |
35 | 608.7 | 37/26 | ^^G♯, vA♭ | v4G♯, ^5A♭ |
36 | 626.1 | 23/16, 33/23 | vG𝄪, A♭ | v3G♯, v5A |
37 | 643.5 | 29/20 | G𝄪, ^A♭ | vvG♯, v4A |
38 | 660.9 | ^G𝄪, vvA | vG♯, v3A | |
39 | 678.3 | 34/23, 37/25 | ^^G𝄪, vA | G♯, vvA |
40 | 695.7 | A | ^G♯, vA | |
41 | 713 | ^A, vvB♭♭ | A | |
42 | 730.4 | 29/19, 32/21, 35/23 | ^^A, vB♭♭ | ^A, vB♭ |
43 | 747.8 | 20/13, 37/24 | vA♯, B♭♭ | ^^A, B♭ |
44 | 765.2 | A♯, ^B♭♭ | ^3A, ^B♭ | |
45 | 782.6 | 11/7 | ^A♯, vvB♭ | ^4A, ^^B♭ |
46 | 800 | 35/22 | ^^A♯, vB♭ | ^5A, ^3B♭ |
47 | 817.4 | 8/5 | vA𝄪, B♭ | v5A♯, ^4B♭ |
48 | 834.8 | 34/21 | A𝄪, ^B♭ | v4A♯, ^5B♭ |
49 | 852.2 | ^A𝄪, vvB | v3A♯, v5B | |
50 | 869.6 | 33/20 | ^^A𝄪, vB | vvA♯, v4B |
51 | 887 | 5/3 | B | vA♯, v3B |
52 | 904.3 | 32/19 | ^B, vvC♭ | A♯, vvB |
53 | 921.7 | 17/10, 29/17 | ^^B, vC♭ | ^A♯, vB |
54 | 939.1 | vB♯, C♭ | B | |
55 | 956.5 | 33/19 | B♯, ^C♭ | ^B, vC |
56 | 973.9 | ^B♯, vvC | C | |
57 | 991.3 | 23/13 | ^^B♯, vC | ^C, vD♭ |
58 | 1008.7 | 34/19 | C | ^^C, D♭ |
59 | 1026.1 | 29/16 | ^C, vvD♭♭ | ^3C, ^D♭ |
60 | 1043.5 | 31/17 | ^^C, vD♭♭ | ^4C, ^^D♭ |
61 | 1060.9 | 24/13, 35/19 | vC♯, D♭♭ | ^5C, ^3D♭ |
62 | 1078.3 | C♯, ^D♭♭ | v5C♯, ^4D♭ | |
63 | 1095.7 | 32/17 | ^C♯, vvD♭ | v4C♯, ^5D♭ |
64 | 1113 | 19/10 | ^^C♯, vD♭ | v3C♯, v5D |
65 | 1130.4 | 25/13 | vC𝄪, D♭ | vvC♯, v4D |
66 | 1147.8 | 31/16, 33/17 | C𝄪, ^D♭ | vC♯, v3D |
67 | 1165.2 | ^C𝄪, vvD | C♯, vvD | |
68 | 1182.6 | ^^C𝄪, vD | ^C♯, vD | |
69 | 1200 | 2/1 | D | D |
Proposed names
Degree | Carmen's naming system | Cents | Approximate Ratios* | Error (abs, ¢) |
---|---|---|---|---|
0 | Natural Unison, 1 | 0.000 | 1/1 | 0.000 |
1 | Ptolemy's comma | 17.391 | 100/99 | −0.008 |
2 | Jubilisma, lesser septimal sixth tone | 34.783 | 50/49, 101/99 | −0.193, 0.157 |
3 | lesser septendecimal quartertone, _____ | 52.174 | 34/33, 101/98 | 0.491, −0.028 |
4 | _____ | 69.565 | 76/73 | −0.158 |
5 | Small undevicesimal semitone | 86.957 | 20/19 | −1.844 |
6 | Large septendecimal semitone | 104.348 | 17/16 | −0.608 |
7 | Septimal diatonic semitone | 121.739 | 15/14 | 2.296 |
8 | Tridecimal neutral second | 139.130 | 13/12 | 0.558 |
9 | Vicesimotertial neutral second | 156.522 | 23/21 | −0.972 |
10 | Undevicesimal large neutral second, undevicesimal whole tone | 173.913 | 21/19 | 0.645 |
11 | Quasi-meantone | 191.304 | 19/17 | −1.253 |
12 | Whole tone | 208.696 | 9/8 | 4.786 |
13 | Septimal whole tone | 226.087 | 8/7 | −5.087 |
14 | Vicesimotertial semifourth | 243.478 | 23/20 | 1.518 |
15 | Subminor third, undetricesimal subminor third | 260.870 | 7/6, 29/25 | −6.001, 3.920 |
16 | Vicesimotertial subminor third | 278.261 | 27/23 | 0.670 |
17 | Pythagorean minor third | 295.652 | 32/27 | 1.517 |
18 | Classic minor third | 313.043 | 6/5 | −2.598 |
19 | Vicesimotertial supraminor third | 330.435 | 23/19 | −0.327 |
20 | Undecimal neutral third | 347.826 | 11/9 | 0.418 |
21 | Septendecimal submajor third | 365.217 | 21/17 | −0.608 |
22 | Classic major third | 382.609 | 5/4 | −3.705 |
23 | Undetricesimal major third, Septendecimal major third | 400.000 | 29/23, 34/27 | −1.303, 0.910 |
24 | Undecimal major third | 417.391 | 14/11 | −0.117 |
25 | Supermajor third | 434.783 | 9/7 | −0.301 |
26 | Barbados third | 452.174 | 13/10 | −2.040 |
27 | Septimal sub-fourth | 469.565 | 21/16 | −1.216 |
28 | _____ | 486.957 | 53/40 | −0.234 |
29 | Just perfect fourth | 504.348 | 4/3 | 6.303 |
30 | Vicesimotertial acute fourth | 521.739 | 23/17 | −1.580 |
31 | Undecimal augmented fourth | 539.130 | 15/11 | 2.180 |
32 | Undecimal superfourth, undetricesimal superfourth | 556.522 | 11/8, 29/21 | 5.204, −2.275 |
33 | Narrow tritone, classic augmented fourth | 573.913 | 7/5, 25/18 | −8.600, 5.196 |
34 | _____ | 591.304 | 31/22 | −2.413 |
35 | High tritone, undevicesimal tritone | 608.696 | 10/7, 27/19 | −8.792, 0.344 |
36 | _____ | 626.087 | 33/23 | 1.088 |
37 | Undetricesimal tritone | 643.478 | 29/20 | 0.215 |
38 | Undevicesimal diminished fifth, undecimal diminished fifth | 660.870 | 19/13, 22/15 | 3.884, −2.180 |
39 | Vicesimotertial grave fifth, _____ | 678.261 | 34/23, 37/25 | 1.580, −0.456 |
40 | Just perfect fifth | 695.652 | 3/2 | −6.303 |
41 | _____ | 713.043 | 80/53 | 0.234 |
42 | Super-fifth, undetricesimal super-fifth | 730.435 | 32/21, 29/19 | 1.216, −1.630 |
43 | Septendecimal subminor sixth | 747.826 | 17/11 | −5.811 |
44 | Subminor sixth | 765.217 | 14/9 | 0.301 |
45 | Undecimal minor sixth | 782.609 | 11/7 | 0.117 |
46 | Septendecimal subminor sixth | 800.000 | 27/17 | −0.910 |
47 | Classic minor sixth | 817.391 | 8/5 | 3.705 |
48 | Septendecimal supraminor sixth | 834.783 | 34/21 | 0.608 |
49 | Undecimal neutral sixth | 852.174 | 18/11 | −0.418 |
50 | Vicesimotertial submajor sixth | 869.565 | 38/23 | 0.327 |
51 | Classic major sixth | 886.957 | 5/3 | 2.598 |
52 | Pythagorean major sixth | 904.348 | 27/16 | −1.517 |
53 | Septendecimal major sixth, undetricesimal major sixth | 921.739 | 17/10, 29/17 | 3.097, −2.883 |
54 | Supermajor sixth, undetricesimal supermajor sixth | 939.130 | 12/7, 50/29 | 6.001, −3.920 |
55 | Vicesimotertial supermajor sixth | 956.522 | 40/23 | −1.518 |
56 | Harmonic seventh | 973.913 | 7/4 | 5.087 |
57 | Pythagorean minor seventh | 991.304 | 16/9 | −4.786 |
58 | Quasi-meantone minor seventh | 1008.696 | 34/19 | 1.253 |
59 | Minor neutral undevicesimal seventh | 1026.087 | 38/21 | −0.645 |
60 | Vicesimotertial neutral seventh | 1043.478 | 42/23 | 0.972 |
61 | Tridecimal neutral seventh | 1060.870 | 24/13 | −0.558 |
62 | Septimal diatonic major seventh | 1078.261 | 28/15 | −2.296 |
63 | Small septendecimal major seventh | 1095.652 | 32/17 | 0.608 |
64 | Small undevicesimal semitone | 1113.043 | 20/19 | 1.844 |
65 | _____ | 1130.435 | 73/38 | 0.158 |
66 | Septendecimal supermajor seventh | 1147.826 | 33/17 | −0.491 |
67 | _____ | 1165.217 | 49/25 | −0.193 |
68 | _____ | 1182.609 | 99/50 | 0.008 |
69 | Octave, 8 | 1200.000 | 2/1 | 0.000 |
* Some simpler ratios listed
Notation
Ups and downs notation
Using Helmholtz–Ellis accidentals, 69edo can also be notated using ups and downs notation along with Stein–Zimmerman quarter-tone accidentals:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Here, a sharp raises by four steps, and a flat lowers by four steps, so arrows can be used to fill in the gap.
Sagittal notation
This notation uses the same sagittal sequence as EDOs 62 and 76.
Evo flavor

Revo flavor

Evo-SZ flavor

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-109 69⟩ | [⟨69 109]] | +1.99 | 1.99 | 11.43 |
2.3.5 | 81/80, [-41 1 17⟩ | [⟨69 109 160]] | +1.86 | 1.64 | 9.40 |
2.3.5.7 | 81/80, 126/125, 4117715/3981312 | [⟨69 109 160 193]] (69d) | +2.49 | 1.79 | 10.28 |
2.3.5.7 | 81/80, 3125/3087, 6144/6125 | [⟨69 109 160 194]] (69) | +0.94 | 2.13 | 12.23 |
Rank 2 temperaments
Periods per 8ve |
Generator | Temperaments |
---|---|---|
1 | 2\69 | Gammy (69de) |
1 | 19\69 | Rarity |
1 | 20\69 | Mohaha (69e) |
1 | 22\69 | Caleb (69) marveltri (69) |
1 | 29\69 | Meantone (69d) |
3 | 5\69 | Ogene (69bceef) |
3 | 6\69 | August (7-limit, 69cdd) Lithium (69) |
3 | 9\69 | Nessafof (69e) |
Scales
- Supermajor[11], 3L 8s – 6 6 6 7 6 6 6 7 6 6 7
- Meantone[7], 5L 2s (gen = 40\69) – 11 11 7 11 11 11 7
- Meantone[12], 7L 5s (gen = 40\69) – 7 4 7 4 7 4 7 7 4 7 4 7
- Lithium[9], 3L 6s – 11 6 6 11 6 6 11 6 6
- Lithium[12], 9L 3s – 5 6 6 6 5 6 6 6 5 6 6 6
Music
- Hypergiant Sakura (2021)
- 69 hours before (2023)