71zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
Contribution (talk | contribs) |
||
Line 2,051: | Line 2,051: | ||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] | ||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | |||
|- | |||
|+ style="white-space:nowrap" | Intervals in 71zpi with prime 2 removed | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 32-integer limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | |||
* '''Bold:''' relative error < 16.667 % | |||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| colspan="2" style="text-align:right;" | <center>'''⟨81 128] at every 4 steps'''</center><br>[[9/8|Whole tone]] = 13 steps<br>[[256/243|Limma]] = 8 steps<br>[[2187/2048|Apotome]] = 5 steps | |||
|- | |||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and Downs Notation | |||
! Step | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
| P1 | |||
| 0 | |||
|- | |||
| 1 | |||
| 59.333 | |||
| '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small> | |||
| vA1, ^d2 | |||
| 4 | |||
|- | |||
| 2 | |||
| 118.666 | |||
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small> | |||
| m2 | |||
| 8 | |||
|- | |||
| 3 | |||
| 177.999 | |||
| <small><small><small>[[12/11]]</small></small></small>, <small><small>[[23/21]]</small></small>, [[11/10]], '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, '''<u>[[10/9]]'''</u>, [[29/26]], [[19/17]], <small>[[28/25]]</small>, <small><small><small>[[9/8]]</small></small></small> | |||
| vM2 | |||
| 12 | |||
|- | |||
| 4 | |||
| 237.332 | |||
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small>[[29/25]]</small>, <small><small><small>[[7/6]]</small></small></small> | |||
| vvA2 | |||
| 16 | |||
|- | |||
| 5 | |||
| 296.665 | |||
| <small>[[27/23]]</small>, <small>[[20/17]]</small>, '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small> | |||
| vm3 | |||
| 20 | |||
|- | |||
| 6 | |||
| 355.998 | |||
| <small><small><small>[[29/24]]</small></small></small>, <small><small><small>[[23/19]]</small></small></small>, <small><small>[[17/14]]</small></small>, <small>[[28/23]]</small>, '''[[11/9]]''', '''<u>[[27/22]]'''</u>, '''<u>[[16/13]]'''</u>, '''[[21/17]]''', [[26/21]], <small>[[31/25]]</small> | |||
| vvM3 | |||
| 24 | |||
|- | |||
| 7 | |||
| 415.331 | |||
| <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small>[[9/7]]</small>, <small><small><small>[[31/24]]</small></small></small> | |||
| ^^M3 | |||
| 28 | |||
|- | |||
| 8 | |||
| 474.664 | |||
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], [[17/13]], '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, <small><small>[[4/3]]</small></small> | |||
| vv4 | |||
| 32 | |||
|- | |||
| 9 | |||
| 533.997 | |||
| <small>[[31/23]]</small>, [[27/20]], [[23/17]], '''[[19/14]]''', '''<u>[[15/11]]'''</u>, '''[[26/19]]''', <small>[[11/8]]</small>, <small><small><small>[[29/21]]</small></small></small>, <small><small><small>[[18/13]]</small></small></small> | |||
| ^^4 | |||
| 36 | |||
|- | |||
| 10 | |||
| 593.330 | |||
| <small><small>[[25/18]]</small></small>, <small><small>[[32/23]]</small></small>, [[7/5]], '''<u>[[31/22]]'''</u>, '''<u>[[24/17]]'''</u>, '''[[17/12]]''', <small>[[27/19]]</small>, <small><small>[[10/7]]</small></small> | |||
| ^A4 | |||
| 40 | |||
|- | |||
| 11 | |||
| 652.663 | |||
| <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''<u>[[19/13]]'''</u>, [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small> | |||
| ^^d5 | |||
| 44 | |||
|- | |||
| 12 | |||
| 711.996 | |||
| [[3/2]], <small>[[32/21]]</small>, <small><small>[[29/19]]</small></small>, <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small> | |||
| ^5 | |||
| 48 | |||
|- | |||
| 13 | |||
| 771.329 | |||
| <small><small><small>[[20/13]]</small></small></small>, <small>[[17/11]]</small>, [[31/20]], '''[[14/9]]''', '''<u>[[25/16]]'''</u>, [[11/7]], <small>[[30/19]]</small>, <small><small>[[19/12]]</small></small>, <small><small><small>[[27/17]]</small></small></small> | |||
| ^^d6 | |||
| 52 | |||
|- | |||
| 14 | |||
| 830.662 | |||
| <small>[[8/5]]</small>, '''[[29/18]]''', '''<u>[[21/13]]'''</u>, '''[[13/8]]''', <small>[[31/19]]</small>, <small><small>[[18/11]]</small></small>, <small><small><small>[[23/14]]</small></small></small> | |||
| ^m6 | |||
| 56 | |||
|- | |||
| 15 | |||
| 889.995 | |||
| <small><small><small>[[28/17]]</small></small></small>, '''[[5/3]]''', [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small> | |||
| M6 | |||
| 60 | |||
|- | |||
| 16 | |||
| 949.328 | |||
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, <small>[[7/4]]</small> | |||
| vA6, ^d7 | |||
| 64 | |||
|- | |||
| 17 | |||
| 1008.661 | |||
| <small><small><small>[[30/17]]</small></small></small>, <small><small>[[23/13]]</small></small>, [[16/9]], '''<u>[[25/14]]'''</u>, '''[[9/5]]''', <small><small>[[29/16]]</small></small>, <small><small><small>[[20/11]]</small></small></small> | |||
| m7 | |||
| 68 | |||
|- | |||
| 18 | |||
| 1067.994 | |||
| <small><small><small>[[31/17]]</small></small></small>, <small>[[11/6]]</small>, '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[28/15]], <small><small>[[15/8]]</small></small>, <small><small><small>[[32/17]]</small></small></small> | |||
| vM7 | |||
| 72 | |||
|- | |||
| 19 | |||
| 1127.327 | |||
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''<u>[[25/13]]'''</u>, '''[[27/14]]''', [[29/15]], <small>[[31/16]]</small> | |||
| vvA7 | |||
| 76 | |||
|- | |||
| 20 | |||
| 1186.660 | |||
| [[2/1]] | |||
| v1 +1 oct | |||
| 80 | |||
|- | |||
| 21 | |||
| 1245.993 | |||
| [[31/15]], [[29/14]], <small>[[27/13]]</small>, <small><small>[[25/12]]</small></small> | |||
| vvA1 +1 oct | |||
| 84 | |||
|- | |||
| 22 | |||
| 1305.326 | |||
| <small><small><small>[[23/11]]</small></small></small>, <small><small>[[21/10]]</small></small>, [[19/9]], '''<u>[[17/8]]'''</u>, '''[[32/15]]''', [[15/7]], <small><small>[[28/13]]</small></small> | |||
| vm2 +1 oct | |||
| 88 | |||
|- | |||
| 23 | |||
| 1364.659 | |||
| <small><small><small>[[13/6]]</small></small></small>, [[24/11]], '''<u>[[11/5]]'''</u>, [[31/14]], <small>[[20/9]]</small>, <small><small>[[29/13]]</small></small> | |||
| vvM2 +1 oct | |||
| 92 | |||
|- | |||
| 24 | |||
| 1423.992 | |||
| <small><small>[[9/4]]</small></small>, '''<u>[[25/11]]'''</u>, '''[[16/7]]''', <small>[[23/10]]</small>, <small><small>[[30/13]]</small></small> | |||
| ^^M2 +1 oct | |||
| 96 | |||
|- | |||
| 25 | |||
| 1483.325 | |||
| <small>[[7/3]]</small>, '''[[26/11]]''', [[19/8]], <small><small>[[31/13]]</small></small> | |||
| vvm3 +1 oct | |||
| 100 | |||
|- | |||
| 26 | |||
| 1542.657 | |||
| <small><small><small>[[12/5]]</small></small></small>, <small>[[29/12]]</small>, '''[[17/7]]''', '''<u>[[22/9]]'''</u>, [[27/11]], <small>[[32/13]]</small> | |||
| ^^m3 +1 oct | |||
| 104 | |||
|- | |||
| 27 | |||
| 1601.990 | |||
| <small>[[5/2]]</small>, <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small> | |||
| ^M3 +1 oct | |||
| 108 | |||
|- | |||
| 28 | |||
| 1661.323 | |||
| <small><small><small>[[18/7]]</small></small></small>, <small>[[31/12]]</small>, '''[[13/5]]''', '''[[21/8]]''', <small>[[29/11]]</small> | |||
| ^^d4 +1 oct | |||
| 112 | |||
|- | |||
| 29 | |||
| 1720.656 | |||
| <small><small>[[8/3]]</small></small>, '''<u>[[27/10]]'''</u>, '''[[19/7]]''', <small>[[30/11]]</small> | |||
| ^4 +1 oct | |||
| 116 | |||
|- | |||
| 30 | |||
| 1779.989 | |||
| <small><small><small>[[11/4]]</small></small></small>, [[25/9]], '''<u>[[14/5]]'''</u>, [[31/11]], <small><small>[[17/6]]</small></small> | |||
| A4 +1 oct | |||
| 120 | |||
|- | |||
| 31 | |||
| 1839.322 | |||
| <small><small>[[20/7]]</small></small>, [[23/8]], '''<u>[[26/9]]'''</u>, '''<u>[[29/10]]'''</u>, '''[[32/11]]''' | |||
| ^d5 +1 oct | |||
| 124 | |||
|- | |||
| 32 | |||
| 1898.655 | |||
| '''<u>[[3/1]]'''</u> | |||
| P5 +1 oct | |||
| 128 | |||
|- | |||
| 33 | |||
| 1957.988 | |||
| '''<u>[[31/10]]'''</u>, '''[[28/9]]''', [[25/8]], <small><small>[[22/7]]</small></small> | |||
| vA5 +1 oct, ^d6 +1 oct | |||
| 132 | |||
|- | |||
| 34 | |||
| 2017.321 | |||
| <small><small>[[19/6]]</small></small>, '''<u>[[16/5]]'''</u>, '''[[29/9]]''', <small><small>[[13/4]]</small></small> | |||
| m6 +1 oct | |||
| 136 | |||
|- | |||
| 35 | |||
| 2076.654 | |||
| <small>[[23/7]]</small>, '''[[10/3]]''', <small><small><small>[[27/8]]</small></small></small> | |||
| vM6 +1 oct | |||
| 140 | |||
|- | |||
| 36 | |||
| 2135.987 | |||
| <small>[[17/5]]</small>, '''<u>[[24/7]]'''</u>, '''[[31/9]]''' | |||
| vvA6 +1 oct | |||
| 144 | |||
|- | |||
| 37 | |||
| 2195.320 | |||
| <small><small><small>[[7/2]]</small></small></small>, '''<u>[[32/9]]'''</u>, '''[[25/7]]''', <small><small>[[18/5]]</small></small> | |||
| vm7 +1 oct | |||
| 148 | |||
|- | |||
| 38 | |||
| 2254.653 | |||
| <small><small><small>[[29/8]]</small></small></small>, '''[[11/3]]''', <small>[[26/7]]</small> | |||
| vvM7 +1 oct | |||
| 152 | |||
|- | |||
| 39 | |||
| 2313.986 | |||
| <small><small><small>[[15/4]]</small></small></small>, '''<u>[[19/5]]'''</u>, [[23/6]], <small><small>[[27/7]]</small></small> | |||
| ^^M7 +1 oct | |||
| 156 | |||
|- | |||
| 40 | |||
| 2373.319 | |||
| <small><small><small>[[31/8]]</small></small></small>, <small><small><small>[[4/1]]</small></small></small> | |||
| vv1 +2 oct | |||
| 160 | |||
|- | |||
| 41 | |||
| 2432.652 | |||
| <small><small><small>[[29/7]]</small></small></small> | |||
| ^^1 +2 oct | |||
| 164 | |||
|- | |||
| 42 | |||
| 2491.985 | |||
| <small><small>[[25/6]]</small></small>, '''[[21/5]]''', [[17/4]], <small><small><small>[[30/7]]</small></small></small> | |||
| vvm2 +2 oct | |||
| 168 | |||
|- | |||
| 43 | |||
| 2551.318 | |||
| [[13/3]], [[22/5]], <small><small><small>[[31/7]]</small></small></small> | |||
| ^^m2 +2 oct | |||
| 172 | |||
|- | |||
| 44 | |||
| 2610.651 | |||
| '''[[9/2]]''', <small><small>[[32/7]]</small></small> | |||
| ^M2 +2 oct | |||
| 176 | |||
|- | |||
| 45 | |||
| 2669.984 | |||
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, <small><small><small>[[19/4]]</small></small></small> | |||
| ^^d3 +2 oct | |||
| 180 | |||
|- | |||
| 46 | |||
| 2729.317 | |||
| [[24/5]], '''<u>[[29/6]]'''</u> | |||
| ^m3 +2 oct | |||
| 184 | |||
|- | |||
| 47 | |||
| 2788.650 | |||
| '''<u>[[5/1]]'''</u> | |||
| M3 +2 oct | |||
| 188 | |||
|- | |||
| 48 | |||
| 2847.983 | |||
| '''<u>[[31/6]]'''</u>, '''[[26/5]]''', <small><small>[[21/4]]</small></small> | |||
| vA3 +2 oct, ^d4 +2 oct | |||
| 192 | |||
|- | |||
| 49 | |||
| 2907.316 | |||
| '''[[16/3]]''', [[27/5]] | |||
| P4 +2 oct | |||
| 196 | |||
|- | |||
| 50 | |||
| 2966.649 | |||
| <small>[[11/2]]</small>, <small>[[28/5]]</small> | |||
| vA4 +2 oct | |||
| 200 | |||
|- | |||
| 51 | |||
| 3025.982 | |||
| <small><small>[[17/3]]</small></small>, '''<u>[[23/4]]'''</u>, <small>[[29/5]]</small> | |||
| d5 +2 oct | |||
| 204 | |||
|- | |||
| 52 | |||
| 3085.315 | |||
| <small>[[6/1]]</small> | |||
| v5 +2 oct | |||
| 208 | |||
|- | |||
| 53 | |||
| 3144.648 | |||
| [[31/5]], <small><small><small>[[25/4]]</small></small></small> | |||
| vvA5 +2 oct | |||
| 212 | |||
|- | |||
| 54 | |||
| 3203.981 | |||
| '''[[19/3]]''', '''[[32/5]]''' | |||
| vm6 +2 oct | |||
| 216 | |||
|- | |||
| 55 | |||
| 3263.314 | |||
| <small><small>[[13/2]]</small></small>, <small><small>[[20/3]]</small></small> | |||
| vvM6 +2 oct | |||
| 220 | |||
|- | |||
| 56 | |||
| 3322.647 | |||
| <small>[[27/4]]</small> | |||
| ^^M6 +2 oct | |||
| 224 | |||
|- | |||
| 57 | |||
| 3381.980 | |||
| [[7/1]] | |||
| vvm7 +2 oct | |||
| 228 | |||
|- | |||
| 58 | |||
| 3441.313 | |||
| [[29/4]], '''[[22/3]]''' | |||
| ^^m7 +2 oct | |||
| 232 | |||
|- | |||
| 59 | |||
| 3500.646 | |||
| [[15/2]], <small><small><small>[[23/3]]</small></small></small> | |||
| ^M7 +2 oct | |||
| 236 | |||
|- | |||
| 60 | |||
| 3559.979 | |||
| <small>[[31/4]]</small> | |||
| ^^d1 +3 oct | |||
| 240 | |||
|- | |||
| 61 | |||
| 3619.312 | |||
| <small>[[8/1]]</small> | |||
| ^1 +3 oct | |||
| 244 | |||
|- | |||
| 62 | |||
| 3678.645 | |||
| '''[[25/3]]''', <small><small><small>[[17/2]]</small></small></small> | |||
| ^^d2 +3 oct | |||
| 248 | |||
|- | |||
| 63 | |||
| 3737.978 | |||
| '''<u>[[26/3]]'''</u> | |||
| ^m2 +3 oct | |||
| 252 | |||
|- | |||
| 64 | |||
| 3797.311 | |||
| '''[[9/1]]''' | |||
| M2 +3 oct | |||
| 256 | |||
|- | |||
| 65 | |||
| 3856.644 | |||
| [[28/3]] | |||
| vA2 +3 oct, ^d3 +3 oct | |||
| 260 | |||
|- | |||
| 66 | |||
| 3915.977 | |||
| <small>[[19/2]]</small>, [[29/3]] | |||
| m3 +3 oct | |||
| 264 | |||
|- | |||
| 67 | |||
| 3975.310 | |||
| [[10/1]] | |||
| vM3 +3 oct | |||
| 268 | |||
|- | |||
| 68 | |||
| 4034.643 | |||
| '''[[31/3]]''' | |||
| vvA3 +3 oct | |||
| 272 | |||
|- | |||
| 69 | |||
| 4093.976 | |||
| <small><small>[[21/2]]</small></small>, '''<u>[[32/3]]'''</u> | |||
| v4 +3 oct | |||
| 276 | |||
|- | |||
| 70 | |||
| 4153.309 | |||
| '''<u>[[11/1]]'''</u> | |||
| vvA4 +3 oct | |||
| 280 | |||
|- | |||
| 71 | |||
| 4212.642 | |||
| <small>[[23/2]]</small> | |||
| vd5 +3 oct | |||
| 284 | |||
|- | |||
| 72 | |||
| 4271.975 | |||
| | |||
| vv5 +3 oct | |||
| 288 | |||
|- | |||
| 73 | |||
| 4331.308 | |||
| <small><small><small>[[12/1]]</small></small></small> | |||
| ^^5 +3 oct | |||
| 292 | |||
|- | |||
| 74 | |||
| 4390.641 | |||
| <small>[[25/2]]</small> | |||
| vvm6 +3 oct | |||
| 296 | |||
|- | |||
| 75 | |||
| 4449.974 | |||
| '''[[13/1]]''' | |||
| ^^m6 +3 oct | |||
| 300 | |||
|- | |||
| 76 | |||
| 4509.307 | |||
| '''<u>[[27/2]]'''</u> | |||
| ^M6 +3 oct | |||
| 304 | |||
|- | |||
| 77 | |||
| 4568.640 | |||
| '''<u>[[14/1]]'''</u> | |||
| ^^d7 +3 oct | |||
| 308 | |||
|- | |||
| 78 | |||
| 4627.972 | |||
| '''<u>[[29/2]]'''</u> | |||
| ^m7 +3 oct | |||
| 312 | |||
|- | |||
| 79 | |||
| 4687.305 | |||
| '''<u>[[15/1]]'''</u> | |||
| M7 +3 oct | |||
| 316 | |||
|- | |||
| 80 | |||
| 4746.638 | |||
| '''<u>[[31/2]]'''</u> | |||
| vA7 +3 oct, ^d1 +4 oct | |||
| 320 | |||
|- | |||
| 81 | |||
| 4805.971 | |||
| '''[[16/1]]''' | |||
| P1 +4 oct | |||
| 324 | |||
|- | |||
| 82 | |||
| 4865.304 | |||
| | |||
| vA1 +4 oct, ^d2 +4 oct | |||
| 328 | |||
|- | |||
| 83 | |||
| 4924.637 | |||
| <small>[[17/1]]</small> | |||
| m2 +4 oct | |||
| 332 | |||
|- | |||
| 84 | |||
| 4983.970 | |||
| <small><small>[[18/1]]</small></small> | |||
| vM2 +4 oct | |||
| 336 | |||
|- | |||
| 85 | |||
| 5043.303 | |||
| | |||
| vvA2 +4 oct | |||
| 340 | |||
|- | |||
| 86 | |||
| 5102.636 | |||
| '''[[19/1]]''' | |||
| vm3 +4 oct | |||
| 344 | |||
|- | |||
| 87 | |||
| 5161.969 | |||
| <small><small>[[20/1]]</small></small> | |||
| vvM3 +4 oct | |||
| 348 | |||
|- | |||
| 88 | |||
| 5221.302 | |||
| | |||
| ^^M3 +4 oct | |||
| 352 | |||
|- | |||
| 89 | |||
| 5280.635 | |||
| '''[[21/1]]''' | |||
| vv4 +4 oct | |||
| 356 | |||
|- | |||
| 90 | |||
| 5339.968 | |||
| [[22/1]] | |||
| ^^4 +4 oct | |||
| 360 | |||
|- | |||
| 91 | |||
| 5399.301 | |||
| <small><small><small>[[23/1]]</small></small></small> | |||
| ^A4 +4 oct | |||
| 364 | |||
|- | |||
| 92 | |||
| 5458.634 | |||
| | |||
| ^^d5 +4 oct | |||
| 368 | |||
|- | |||
| 93 | |||
| 5517.967 | |||
| <small>[[24/1]]</small> | |||
| ^5 +4 oct | |||
| 372 | |||
|- | |||
| 94 | |||
| 5577.300 | |||
| '''<u>[[25/1]]'''</u> | |||
| ^^d6 +4 oct | |||
| 376 | |||
|- | |||
| 95 | |||
| 5636.633 | |||
| '''<u>[[26/1]]'''</u> | |||
| ^m6 +4 oct | |||
| 380 | |||
|- | |||
| 96 | |||
| 5695.966 | |||
| [[27/1]] | |||
| M6 +4 oct | |||
| 384 | |||
|- | |||
| 97 | |||
| 5755.299 | |||
| [[28/1]] | |||
| vA6 +4 oct, ^d7 +4 oct | |||
| 388 | |||
|- | |||
| 98 | |||
| 5814.632 | |||
| <small>[[29/1]]</small> | |||
| m7 +4 oct | |||
| 392 | |||
|- | |||
| 99 | |||
| 5873.965 | |||
| [[30/1]] | |||
| vM7 +4 oct | |||
| 396 | |||
|- | |||
| 100 | |||
| 5933.298 | |||
| [[31/1]] | |||
| vvA7 +4 oct | |||
| 400 | |||
|- | |||
| 101 | |||
| 5992.631 | |||
| '''[[32/1]]''' | |||
| v1 +5 oct | |||
| 404 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | Intervals by direct approximation (even if inconsistent) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[14/1]] | |||
| +0.186 | |||
| +0.314 | |||
|- | |||
| [[11/5]] | |||
| +0.346 | |||
| +0.583 | |||
|- | |||
| ''[[17/8]]'' | |||
| ''-0.370'' | |||
| ''-0.624'' | |||
|- | |||
| [[31/22]] | |||
| +0.388 | |||
| +0.654 | |||
|- | |||
| [[21/13]] | |||
| -0.408 | |||
| -0.688 | |||
|- | |||
| [[25/19]] | |||
| +0.451 | |||
| +0.759 | |||
|- | |||
| [[26/3]] | |||
| +0.595 | |||
| +1.003 | |||
|- | |||
| [[30/29]] | |||
| -0.641 | |||
| -1.081 | |||
|- | |||
| [[31/10]] | |||
| +0.733 | |||
| +1.236 | |||
|- | |||
| ''[[32/9]]'' | |||
| ''+0.770'' | |||
| ''+1.297'' | |||
|- | |||
| [[15/14]] | |||
| +0.777 | |||
| +1.309 | |||
|- | |||
| ''[[19/16]]'' | |||
| ''+0.848'' | |||
| ''+1.429'' | |||
|- | |||
| [[15/1]] | |||
| +0.963 | |||
| +1.623 | |||
|- | |||
| [[23/12]] | |||
| -1.007 | |||
| -1.698 | |||
|- | |||
| [[27/10]] | |||
| -1.105 | |||
| -1.863 | |||
|- | |||
| ''[[25/16]]'' | |||
| ''+1.299'' | |||
| ''+2.189'' | |||
|- | |||
| [[29/28]] | |||
| +1.418 | |||
| +2.390 | |||
|- | |||
| [[27/22]] | |||
| -1.451 | |||
| -2.445 | |||
|- | |||
| [[31/2]] | |||
| -1.603 | |||
| -2.702 | |||
|- | |||
| [[29/2]] | |||
| +1.605 | |||
| +2.705 | |||
|- | |||
| [[29/6]] | |||
| -1.695 | |||
| -2.857 | |||
|- | |||
| [[31/28]] | |||
| -1.789 | |||
| -3.016 | |||
|- | |||
| [[31/27]] | |||
| +1.839 | |||
| +3.099 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-1.991''' | |||
| '''-3.355''' | |||
|- | |||
| [[14/11]] | |||
| +2.177 | |||
| +3.669 | |||
|- | |||
| [[23/4]] | |||
| +2.292 | |||
| +3.864 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''-2.336''' | |||
| '''-3.938''' | |||
|- | |||
| [[14/5]] | |||
| +2.523 | |||
| +4.252 | |||
|- | |||
| ''[[32/27]]'' | |||
| ''-2.530'' | |||
| ''-4.264'' | |||
|- | |||
| [[31/30]] | |||
| -2.566 | |||
| -4.325 | |||
|- | |||
| [[25/11]] | |||
| -2.682 | |||
| -4.520 | |||
|- | |||
| [[26/9]] | |||
| -2.705 | |||
| -4.559 | |||
|- | |||
| [[19/5]] | |||
| -2.787 | |||
| -4.697 | |||
|- | |||
| ''[[24/7]]'' | |||
| ''-2.858'' | |||
| ''-4.817'' | |||
|- | |||
| [[26/15]] | |||
| +2.931 | |||
| +4.940 | |||
|- | |||
| [[15/11]] | |||
| +2.954 | |||
| +4.979 | |||
|- | |||
| [[14/3]] | |||
| -3.113 | |||
| -5.247 | |||
|- | |||
| [[19/11]] | |||
| -3.133 | |||
| -5.280 | |||
|- | |||
| [[31/29]] | |||
| -3.208 | |||
| -5.406 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''+3.300''' | |||
| '''+5.561''' | |||
|- | |||
| [[27/2]] | |||
| -3.442 | |||
| -5.800 | |||
|- | |||
| ''[[16/13]]'' | |||
| ''+3.474'' | |||
| ''+5.856'' | |||
|- | |||
| [[29/22]] | |||
| +3.595 | |||
| +6.060 | |||
|- | |||
| [[28/27]] | |||
| +3.628 | |||
| +6.115 | |||
|- | |||
| ''[[16/5]]'' | |||
| ''-3.635'' | |||
| ''-6.127'' | |||
|- | |||
| ''[[24/17]]'' | |||
| ''+3.670'' | |||
| ''+6.185'' | |||
|- | |||
| [[13/7]] | |||
| +3.708 | |||
| +6.250 | |||
|- | |||
| ''[[21/16]]'' | |||
| ''-3.883'' | |||
| ''-6.544'' | |||
|- | |||
| [[26/1]] | |||
| +3.894 | |||
| +6.564 | |||
|- | |||
| [[29/10]] | |||
| +3.941 | |||
| +6.642 | |||
|- | |||
| ''[[16/11]]'' | |||
| ''-3.981'' | |||
| ''-6.709'' | |||
|- | |||
| ''[[32/3]]'' | |||
| ''+4.069'' | |||
| ''+6.858'' | |||
|- | |||
| [[19/13]] | |||
| +4.323 | |||
| +7.285 | |||
|- | |||
| ''[[32/31]]'' | |||
| ''-4.369'' | |||
| ''-7.363'' | |||
|- | |||
| [[10/9]] | |||
| +4.405 | |||
| +7.424 | |||
|- | |||
| [[23/20]] | |||
| +4.629 | |||
| +7.801 | |||
|- | |||
| [[25/1]] | |||
| -4.673 | |||
| -7.875 | |||
|- | |||
| [[21/19]] | |||
| -4.731 | |||
| -7.974 | |||
|- | |||
| [[22/9]] | |||
| +4.750 | |||
| +8.006 | |||
|- | |||
| [[25/13]] | |||
| +4.773 | |||
| +8.045 | |||
|- | |||
| [[25/14]] | |||
| -4.859 | |||
| -8.190 | |||
|- | |||
| [[31/6]] | |||
| -4.903 | |||
| -8.263 | |||
|- | |||
| [[29/18]] | |||
| -4.995 | |||
| -8.418 | |||
|- | |||
| [[29/27]] | |||
| +5.046 | |||
| +8.505 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''-5.123''' | |||
| '''-8.635''' | |||
|- | |||
| [[31/9]] | |||
| +5.138 | |||
| +8.660 | |||
|- | |||
| [[25/21]] | |||
| +5.182 | |||
| +8.733 | |||
|- | |||
| [[11/3]] | |||
| -5.290 | |||
| -8.916 | |||
|- | |||
| [[19/14]] | |||
| -5.310 | |||
| -8.949 | |||
|- | |||
| [[5/3]] | |||
| -5.636 | |||
| -9.499 | |||
|- | |||
| [[26/11]] | |||
| +5.885 | |||
| +9.919 | |||
|- | |||
| ''[[16/1]]'' | |||
| ''-5.971'' | |||
| ''-10.064'' | |||
|- | |||
| [[27/26]] | |||
| +6.004 | |||
| +10.120 | |||
|- | |||
| [[19/15]] | |||
| -6.087 | |||
| -10.258 | |||
|- | |||
| ''[[8/7]]'' | |||
| ''-6.158'' | |||
| ''-10.378'' | |||
|- | |||
| [[26/5]] | |||
| +6.231 | |||
| +10.502 | |||
|- | |||
| ''[[32/15]]'' | |||
| ''+6.406'' | |||
| ''+10.796'' | |||
|- | |||
| [[14/9]] | |||
| -6.413 | |||
| -10.808 | |||
|- | |||
| [[17/7]] | |||
| -6.528 | |||
| -11.002 | |||
|- | |||
| ''[[24/13]]'' | |||
| ''-6.566'' | |||
| ''-11.067'' | |||
|- | |||
| [[9/1]] | |||
| +6.599 | |||
| +11.122 | |||
|- | |||
| [[9/2]] | |||
| -6.741 | |||
| -11.362 | |||
|- | |||
| [[28/9]] | |||
| +6.928 | |||
| +11.676 | |||
|- | |||
| ''[[16/15]]'' | |||
| ''-6.935'' | |||
| ''-11.688'' | |||
|- | |||
| [[13/5]] | |||
| -7.110 | |||
| -11.982 | |||
|- | |||
| ''[[16/7]]'' | |||
| ''+7.183'' | |||
| ''+12.106'' | |||
|- | |||
| ''[[32/1]]'' | |||
| ''+7.369'' | |||
| ''+12.420'' | |||
|- | |||
| [[13/11]] | |||
| -7.455 | |||
| -12.565 | |||
|- | |||
| [[21/5]] | |||
| -7.518 | |||
| -12.671 | |||
|- | |||
| ''[[32/29]]'' | |||
| ''-7.576'' | |||
| ''-12.769'' | |||
|- | |||
| [[10/3]] | |||
| +7.704 | |||
| +12.985 | |||
|- | |||
| [[31/26]] | |||
| +7.843 | |||
| +13.219 | |||
|- | |||
| [[21/11]] | |||
| -7.864 | |||
| -13.253 | |||
|- | |||
| [[25/3]] | |||
| -7.972 | |||
| -13.437 | |||
|- | |||
| [[19/7]] | |||
| +8.031 | |||
| +13.535 | |||
|- | |||
| [[22/3]] | |||
| +8.050 | |||
| +13.568 | |||
|- | |||
| [[31/18]] | |||
| -8.202 | |||
| -13.824 | |||
|- | |||
| [[29/9]] | |||
| +8.346 | |||
| +14.066 | |||
|- | |||
| [[19/3]] | |||
| -8.423 | |||
| -14.196 | |||
|- | |||
| [[31/3]] | |||
| +8.438 | |||
| +14.221 | |||
|- | |||
| [[25/7]] | |||
| +8.481 | |||
| +14.294 | |||
|- | |||
| [[26/25]] | |||
| +8.567 | |||
| +14.439 | |||
|- | |||
| [[11/9]] | |||
| -8.590 | |||
| -14.478 | |||
|- | |||
| [[9/5]] | |||
| +8.936 | |||
| +15.060 | |||
|- | |||
| [[26/19]] | |||
| +9.018 | |||
| +15.199 | |||
|- | |||
| [[23/18]] | |||
| +9.033 | |||
| +15.225 | |||
|- | |||
| ''[[16/3]]'' | |||
| ''-9.271'' | |||
| ''-15.625'' | |||
|- | |||
| ''[[32/11]]'' | |||
| ''+9.360'' | |||
| ''+15.775'' | |||
|- | |||
| [[29/20]] | |||
| -9.399 | |||
| -15.842 | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-9.446''' | |||
| '''-15.920''' | |||
|- | |||
| ''[[21/8]]'' | |||
| ''+9.457'' | |||
| ''+15.940'' | |||
|- | |||
| [[14/13]] | |||
| +9.632 | |||
| +16.234 | |||
|- | |||
| ''[[17/12]]'' | |||
| ''+9.671'' | |||
| ''+16.299'' | |||
|- | |||
| ''[[32/5]]'' | |||
| ''+9.705'' | |||
| ''+16.357'' | |||
|- | |||
| [[27/14]] | |||
| +9.712 | |||
| +16.369 | |||
|- | |||
| [[21/17]] | |||
| +9.828 | |||
| +16.563 | |||
|- | |||
| [[21/1]] | |||
| -9.854 | |||
| -16.609 | |||
|- | |||
| ''[[13/8]]'' | |||
| ''+9.866'' | |||
| ''+16.628'' | |||
|- | |||
| [[27/1]] | |||
| +9.899 | |||
| +16.684 | |||
|- | |||
| [[3/2]] | |||
| -10.041 | |||
| -16.923 | |||
|- | |||
| [[28/3]] | |||
| +10.227 | |||
| +17.237 | |||
|- | |||
| [[17/13]] | |||
| -10.236 | |||
| -17.252 | |||
|- | |||
| [[22/15]] | |||
| +10.386 | |||
| +17.505 | |||
|- | |||
| [[15/13]] | |||
| +10.409 | |||
| +17.544 | |||
|- | |||
| ''[[23/17]]'' | |||
| ''-10.678'' | |||
| ''-17.997'' | |||
|- | |||
| [[31/15]] | |||
| +10.774 | |||
| +18.159 | |||
|- | |||
| [[7/5]] | |||
| -10.818 | |||
| -18.232 | |||
|- | |||
| ''[[24/19]]'' | |||
| ''-10.889'' | |||
| ''-18.352'' | |||
|- | |||
| [[10/1]] | |||
| +11.004 | |||
| +18.546 | |||
|- | |||
| [[23/8]] | |||
| -11.048 | |||
| -18.620 | |||
|- | |||
| [[29/26]] | |||
| +11.051 | |||
| +18.625 | |||
|- | |||
| [[11/7]] | |||
| +11.163 | |||
| +18.815 | |||
|- | |||
| [[25/9]] | |||
| -11.272 | |||
| -18.998 | |||
|- | |||
| ''[[25/24]]'' | |||
| ''+11.339'' | |||
| ''+19.112'' | |||
|- | |||
| [[22/1]] | |||
| +11.350 | |||
| +19.129 | |||
|- | |||
| [[31/14]] | |||
| +11.551 | |||
| +19.468 | |||
|- | |||
| [[29/3]] | |||
| +11.645 | |||
| +19.627 | |||
|- | |||
| [[19/9]] | |||
| -11.723 | |||
| -19.757 | |||
|- | |||
| [[29/4]] | |||
| -11.736 | |||
| -19.779 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''+11.738''' | |||
| '''+19.782''' | |||
|- | |||
| [[27/11]] | |||
| +11.890 | |||
| +20.039 | |||
|- | |||
| ''[[32/25]]'' | |||
| ''+12.042'' | |||
| ''+20.295'' | |||
|- | |||
| [[27/5]] | |||
| +12.235 | |||
| +20.621 | |||
|- | |||
| [[23/6]] | |||
| +12.333 | |||
| +20.786 | |||
|- | |||
| [[15/2]] | |||
| -12.377 | |||
| -20.860 | |||
|- | |||
| ''[[32/19]]'' | |||
| ''+12.492'' | |||
| ''+21.055'' | |||
|- | |||
| [[28/15]] | |||
| +12.564 | |||
| +21.175 | |||
|- | |||
| ''[[16/9]]'' | |||
| ''-12.571'' | |||
| ''-21.187'' | |||
|- | |||
| [[31/20]] | |||
| -12.607 | |||
| -21.248 | |||
|- | |||
| [[13/3]] | |||
| -12.746 | |||
| -21.481 | |||
|- | |||
| ''[[17/4]]'' | |||
| ''+12.970'' | |||
| ''+21.860'' | |||
|- | |||
| [[11/10]] | |||
| -12.995 | |||
| -21.901 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''-13.154''' | |||
| '''-22.170''' | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+13.340''' | |||
| '''+22.484''' | |||
|- | |||
| [[28/1]] | |||
| +13.527 | |||
| +22.798 | |||
|- | |||
| ''[[24/5]]'' | |||
| ''-13.676'' | |||
| ''-23.049'' | |||
|- | |||
| [[22/5]] | |||
| +13.686 | |||
| +23.067 | |||
|- | |||
| ''[[17/16]]'' | |||
| ''-13.711'' | |||
| ''-23.108'' | |||
|- | |||
| [[31/11]] | |||
| +13.728 | |||
| +23.138 | |||
|- | |||
| [[26/21]] | |||
| +13.749 | |||
| +23.172 | |||
|- | |||
| [[29/15]] | |||
| +13.982 | |||
| +23.565 | |||
|- | |||
| ''[[24/11]]'' | |||
| ''-14.021'' | |||
| ''-23.632'' | |||
|- | |||
| [[29/23]] | |||
| -14.028 | |||
| -23.643 | |||
|- | |||
| [[31/5]] | |||
| +14.074 | |||
| +23.720 | |||
|- | |||
| [[15/7]] | |||
| +14.117 | |||
| +23.793 | |||
|- | |||
| ''[[19/8]]'' | |||
| ''+14.188'' | |||
| ''+23.913'' | |||
|- | |||
| [[30/1]] | |||
| +14.304 | |||
| +24.107 | |||
|- | |||
| [[24/23]] | |||
| +14.348 | |||
| +24.182 | |||
|- | |||
| [[27/20]] | |||
| -14.446 | |||
| -24.347 | |||
|- | |||
| [[19/17]] | |||
| +14.559 | |||
| +24.537 | |||
|- | |||
| [[27/25]] | |||
| +14.572 | |||
| +24.559 | |||
|- | |||
| ''[[25/8]]'' | |||
| ''+14.639'' | |||
| ''+24.673'' | |||
|- | |||
| [[30/23]] | |||
| -14.669 | |||
| -24.724 | |||
|- | |||
| [[29/14]] | |||
| +14.759 | |||
| +24.874 | |||
|- | |||
| [[31/4]] | |||
| -14.943 | |||
| -25.185 | |||
|- | |||
| '''[[29/1]]''' | |||
| '''+14.945''' | |||
| '''+25.189''' | |||
|- | |||
| [[25/17]] | |||
| +15.009 | |||
| +25.297 | |||
|- | |||
| [[27/19]] | |||
| +15.022 | |||
| +25.318 | |||
|- | |||
| [[29/12]] | |||
| -15.035 | |||
| -25.341 | |||
|- | |||
| ''[[20/17]]'' | |||
| ''-15.307'' | |||
| ''-25.798'' | |||
|- | |||
| [[11/2]] | |||
| -15.331 | |||
| -25.839 | |||
|- | |||
| [[28/23]] | |||
| -15.446 | |||
| -26.033 | |||
|- | |||
| [[28/11]] | |||
| +15.517 | |||
| +26.153 | |||
|- | |||
| [[23/2]] | |||
| +15.633 | |||
| +26.347 | |||
|- | |||
| [[5/2]] | |||
| -15.677 | |||
| -26.422 | |||
|- | |||
| [[28/5]] | |||
| +15.863 | |||
| +26.736 | |||
|- | |||
| ''[[27/16]]'' | |||
| ''+15.870'' | |||
| ''+26.748'' | |||
|- | |||
| ''[[24/1]]'' | |||
| ''-16.012'' | |||
| ''-26.987'' | |||
|- | |||
| [[25/22]] | |||
| -16.022 | |||
| -27.004 | |||
|- | |||
| [[13/9]] | |||
| -16.045 | |||
| -27.043 | |||
|- | |||
| [[19/10]] | |||
| -16.127 | |||
| -27.181 | |||
|- | |||
| ''[[12/7]]'' | |||
| ''-16.199'' | |||
| ''-27.301'' | |||
|- | |||
| [[30/11]] | |||
| +16.294 | |||
| +27.463 | |||
|- | |||
| [[31/25]] | |||
| +16.410 | |||
| +27.658 | |||
|- | |||
| [[7/3]] | |||
| -16.454 | |||
| -27.731 | |||
|- | |||
| [[22/19]] | |||
| +16.473 | |||
| +27.764 | |||
|- | |||
| [[6/1]] | |||
| +16.640 | |||
| +28.045 | |||
|- | |||
| [[27/4]] | |||
| -16.782 | |||
| -28.284 | |||
|- | |||
| ''[[32/13]]'' | |||
| ''+16.815'' | |||
| ''+28.340'' | |||
|- | |||
| [[31/19]] | |||
| +16.861 | |||
| +28.417 | |||
|- | |||
| [[29/11]] | |||
| +16.936 | |||
| +28.544 | |||
|- | |||
| ''[[8/5]]'' | |||
| ''-16.975'' | |||
| ''-28.610'' | |||
|- | |||
| [[26/7]] | |||
| +17.048 | |||
| +28.734 | |||
|- | |||
| ''[[23/7]]'' | |||
| ''-17.206'' | |||
| ''-28.999'' | |||
|- | |||
| ''[[32/21]]'' | |||
| ''+17.223'' | |||
| ''+29.028'' | |||
|- | |||
| [[31/23]] | |||
| -17.236 | |||
| -29.049 | |||
|- | |||
| [[29/5]] | |||
| +17.281 | |||
| +29.126 | |||
|- | |||
| ''[[11/8]]'' | |||
| ''+17.321'' | |||
| ''+29.193'' | |||
|- | |||
| [[17/5]] | |||
| -17.346 | |||
| -29.234 | |||
|- | |||
| [[23/22]] | |||
| +17.623 | |||
| +29.703 | |||
|- | |||
| [[17/11]] | |||
| -17.691 | |||
| -29.817 | |||
|- | |||
| ''[[31/16]]'' | |||
| ''+17.709'' | |||
| ''+29.847'' | |||
|- | |||
| [[20/9]] | |||
| +17.745 | |||
| +29.908 | |||
|- | |||
| [[23/10]] | |||
| +17.969 | |||
| +30.285 | |||
|- | |||
| [[25/2]] | |||
| -18.013 | |||
| -30.359 | |||
|- | |||
| [[28/25]] | |||
| +18.200 | |||
| +30.674 | |||
|- | |||
| [[31/12]] | |||
| -18.243 | |||
| -30.747 | |||
|- | |||
| [[19/2]] | |||
| -18.464 | |||
| -31.119 | |||
|- | |||
| [[11/6]] | |||
| -18.631 | |||
| -31.400 | |||
|- | |||
| [[28/19]] | |||
| +18.650 | |||
| +31.433 | |||
|- | |||
| [[6/5]] | |||
| +18.976 | |||
| +31.983 | |||
|- | |||
| [[27/23]] | |||
| -19.074 | |||
| -32.148 | |||
|- | |||
| ''[[8/1]]'' | |||
| ''-19.312'' | |||
| ''-32.548'' | |||
|- | |||
| [[27/13]] | |||
| +19.345 | |||
| +32.604 | |||
|- | |||
| [[30/19]] | |||
| +19.427 | |||
| +32.742 | |||
|- | |||
| ''[[7/4]]'' | |||
| ''+19.498'' | |||
| ''+32.862'' | |||
|- | |||
| [[29/25]] | |||
| +19.618 | |||
| +33.064 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''-19.682''' | |||
| '''-33.172''' | |||
|- | |||
| ''[[18/17]]'' | |||
| ''-19.711'' | |||
| ''-33.222'' | |||
|- | |||
| [[9/7]] | |||
| +19.753 | |||
| +33.292 | |||
|- | |||
| [[17/14]] | |||
| -19.868 | |||
| -33.486 | |||
|- | |||
| ''[[13/12]]'' | |||
| ''+19.907'' | |||
| ''+33.551'' | |||
|- | |||
| [[18/1]] | |||
| +19.940 | |||
| +33.606 | |||
|- | |||
| [[29/19]] | |||
| +20.068 | |||
| +33.823 | |||
|- | |||
| [[9/4]] | |||
| -20.082 | |||
| -33.845 | |||
|- | |||
| ''[[15/8]]'' | |||
| ''+20.275'' | |||
| ''+34.172'' | |||
|- | |||
| [[13/10]] | |||
| -20.450 | |||
| -34.466 | |||
|- | |||
| ''[[23/21]]'' | |||
| ''-20.506'' | |||
| ''-34.560'' | |||
|- | |||
| ''[[32/7]]'' | |||
| ''+20.523'' | |||
| ''+34.589'' | |||
|- | |||
| [[17/15]] | |||
| -20.645 | |||
| -34.796 | |||
|- | |||
| [[22/13]] | |||
| +20.796 | |||
| +35.049 | |||
|- | |||
| [[21/10]] | |||
| -20.858 | |||
| -35.155 | |||
|- | |||
| ''[[23/13]]'' | |||
| ''-20.914'' | |||
| ''-35.249'' | |||
|- | |||
| ''[[29/16]]'' | |||
| ''+20.917'' | |||
| ''+35.253'' | |||
|- | |||
| [[20/3]] | |||
| +21.045 | |||
| +35.469 | |||
|- | |||
| [[31/13]] | |||
| +21.183 | |||
| +35.703 | |||
|- | |||
| [[22/21]] | |||
| +21.204 | |||
| +35.737 | |||
|- | |||
| [[25/6]] | |||
| -21.313 | |||
| -35.921 | |||
|- | |||
| [[31/21]] | |||
| +21.592 | |||
| +36.391 | |||
|- | |||
| ''[[32/23]]'' | |||
| ''-21.604'' | |||
| ''-36.412'' | |||
|- | |||
| [[19/6]] | |||
| -21.763 | |||
| -36.680 | |||
|- | |||
| ''[[20/7]]'' | |||
| ''-21.835'' | |||
| ''-36.800'' | |||
|- | |||
| [[18/11]] | |||
| +21.930 | |||
| +36.961 | |||
|- | |||
| [[18/5]] | |||
| +22.276 | |||
| +37.544 | |||
|- | |||
| [[23/9]] | |||
| +22.374 | |||
| +37.709 | |||
|- | |||
| ''[[8/3]]'' | |||
| ''-22.611'' | |||
| ''-38.109'' | |||
|- | |||
| [[13/2]] | |||
| -22.786 | |||
| -38.404 | |||
|- | |||
| ''[[21/4]]'' | |||
| ''+22.798'' | |||
| ''+38.424'' | |||
|- | |||
| [[28/13]] | |||
| +22.973 | |||
| +38.718 | |||
|- | |||
| [[17/3]] | |||
| -22.982 | |||
| -38.733 | |||
|- | |||
| ''[[17/6]]'' | |||
| ''+23.011'' | |||
| ''+38.783'' | |||
|- | |||
| [[27/7]] | |||
| +23.053 | |||
| +38.853 | |||
|- | |||
| [[21/2]] | |||
| -23.195 | |||
| -39.093 | |||
|- | |||
| ''[[13/4]]'' | |||
| ''+23.206'' | |||
| ''+39.112'' | |||
|- | |||
| [[4/3]] | |||
| +23.381 | |||
| +39.407 | |||
|- | |||
| [[26/17]] | |||
| +23.576 | |||
| +39.736 | |||
|- | |||
| [[30/13]] | |||
| +23.750 | |||
| +40.028 | |||
|- | |||
| [[10/7]] | |||
| +24.158 | |||
| +40.716 | |||
|- | |||
| ''[[19/12]]'' | |||
| ''+24.229'' | |||
| ''+40.836'' | |||
|- | |||
| [[20/1]] | |||
| +24.344 | |||
| +41.030 | |||
|- | |||
| [[23/16]] | |||
| -24.388 | |||
| -41.104 | |||
|- | |||
| [[29/13]] | |||
| +24.391 | |||
| +41.109 | |||
|- | |||
| [[22/7]] | |||
| +24.504 | |||
| +41.299 | |||
|- | |||
| [[25/18]] | |||
| -24.612 | |||
| -41.482 | |||
|- | |||
| ''[[25/12]]'' | |||
| ''+24.680'' | |||
| ''+41.595'' | |||
|- | |||
| ''[[29/17]]'' | |||
| ''-24.706'' | |||
| ''-41.639'' | |||
|- | |||
| [[29/21]] | |||
| +24.799 | |||
| +41.797 | |||
|- | |||
| [[31/7]] | |||
| +24.891 | |||
| +41.952 | |||
|- | |||
| [[19/18]] | |||
| -25.063 | |||
| -42.241 | |||
|- | |||
| [[29/8]] | |||
| -25.076 | |||
| -42.263 | |||
|- | |||
| [[26/23]] | |||
| -25.079 | |||
| -42.268 | |||
|- | |||
| ''[[21/20]]'' | |||
| ''+25.134'' | |||
| ''+42.361'' | |||
|- | |||
| ''[[23/19]]'' | |||
| ''-25.237'' | |||
| ''-42.534'' | |||
|- | |||
| ''[[30/17]]'' | |||
| ''-25.347'' | |||
| ''-42.721'' | |||
|- | |||
| ''[[20/13]]'' | |||
| ''-25.543'' | |||
| ''-43.050'' | |||
|- | |||
| [[23/3]] | |||
| +25.673 | |||
| +43.270 | |||
|- | |||
| ''[[25/23]]'' | |||
| ''+25.687'' | |||
| ''+43.293'' | |||
|- | |||
| [[15/4]] | |||
| -25.718 | |||
| -43.344 | |||
|- | |||
| ''[[9/8]]'' | |||
| ''+25.911'' | |||
| ''+43.671'' | |||
|- | |||
| [[13/6]] | |||
| -26.086 | |||
| -43.965 | |||
|- | |||
| ''[[28/17]]'' | |||
| ''-26.124'' | |||
| ''-44.030'' | |||
|- | |||
| ''[[18/7]]'' | |||
| ''-26.239'' | |||
| ''-44.224'' | |||
|- | |||
| [[17/9]] | |||
| -26.281 | |||
| -44.294 | |||
|- | |||
| ''[[17/2]]'' | |||
| ''+26.311'' | |||
| ''+44.344'' | |||
|- | |||
| [[20/11]] | |||
| +26.335 | |||
| +44.385 | |||
|- | |||
| [[7/2]] | |||
| -26.494 | |||
| -44.654 | |||
|- | |||
| [[4/1]] | |||
| +26.681 | |||
| +44.968 | |||
|- | |||
| ''[[12/5]]'' | |||
| ''-27.016'' | |||
| ''-45.533'' | |||
|- | |||
| ''[[32/17]]'' | |||
| ''+27.051'' | |||
| ''+45.592'' | |||
|- | |||
| ''[[12/11]]'' | |||
| ''-27.362'' | |||
| ''-46.116'' | |||
|- | |||
| [[30/7]] | |||
| +27.458 | |||
| +46.277 | |||
|- | |||
| ''[[19/4]]'' | |||
| ''+27.529'' | |||
| ''+46.397'' | |||
|- | |||
| ''[[31/24]]'' | |||
| ''+27.750'' | |||
| ''+46.769'' | |||
|- | |||
| ''[[31/17]]'' | |||
| ''-27.913'' | |||
| ''-47.045'' | |||
|- | |||
| ''[[25/4]]'' | |||
| ''+27.979'' | |||
| ''+47.157'' | |||
|- | |||
| [[23/15]] | |||
| +28.010 | |||
| +47.208 | |||
|- | |||
| ''[[23/5]]'' | |||
| ''-28.023'' | |||
| ''-47.231'' | |||
|- | |||
| [[29/7]] | |||
| +28.099 | |||
| +47.358 | |||
|- | |||
| [[31/8]] | |||
| -28.284 | |||
| -47.669 | |||
|- | |||
| ''[[22/17]]'' | |||
| ''-28.301'' | |||
| ''-47.699'' | |||
|- | |||
| ''[[23/11]]'' | |||
| ''-28.369'' | |||
| ''-47.813'' | |||
|- | |||
| [[29/24]] | |||
| -28.376 | |||
| -47.824 | |||
|- | |||
| ''[[17/10]]'' | |||
| ''+28.647'' | |||
| ''+48.282'' | |||
|- | |||
| [[11/4]] | |||
| -28.671 | |||
| -48.323 | |||
|- | |||
| [[23/14]] | |||
| +28.787 | |||
| +48.517 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''+28.973''' | |||
| '''+48.831''' | |||
|- | |||
| [[5/4]] | |||
| -29.017 | |||
| -48.906 | |||
|- | |||
| ''[[27/8]]'' | |||
| ''+29.211'' | |||
| ''+49.232'' | |||
|- | |||
| ''[[12/1]]'' | |||
| ''-29.353'' | |||
| ''-49.471'' | |||
|- | |||
| [[18/13]] | |||
| +29.386 | |||
| +49.526 | |||
|- | |||
| [[20/19]] | |||
| +29.468 | |||
| +49.665 | |||
|- | |||
| ''[[7/6]]'' | |||
| ''+29.539'' | |||
| ''+49.785'' | |||
|- | |||
| [[27/17]] | |||
| +29.581 | |||
| +49.856 | |||
|} |
Revision as of 10:57, 12 August 2024
71 zeta peak index (abbreviated 71zpi), is the equal-step tuning system obtained from the 71st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 0.613581 | 12.986080 | 20edo | 1186.65961344942 | 6 | 6 |

Theory
71zpi marks the most prominent zeta peak index in the vicinity of 20edo. While 70zpi is the nearest peak to 20edo and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of 32edt, a no-2s zeta peak EDT (consistent in the no-2s 21-throdd-limit), but with less extreme stretch than the no-2s peak at 59.271105 cents.
71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of 20edo.
The nearest zeta peaks to 71zpi that surpass its strength are 65zpi and 75zpi.
71zpi is distinguished by its extensive EDO-deviation and substantial zeta strength, qualifying it as a strong candidate for no-octave tuning systems. It is noteworthy that only 19zpi exhibits both a greater octave error and stronger zeta height and integral than 71zpi, although 71zpi still has a more pronounced zeta gap. Other notable zeta peak indices in this category include 61zpi, 84zpi, 110zpi, 137zpi, 151zpi, 222zpi, and 273zpi, each demonstrating characteristics that make them suitable for similar applications.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -13.3 | -3.3 | -26.7 | +2.3 | -16.6 | +13.2 | +19.3 | -6.6 | -11.0 | +2.0 | +29.4 | +9.4 | -0.2 | -1.0 | +6.0 |
Relative (%) | -22.5 | -5.6 | -45.0 | +3.9 | -28.0 | +22.2 | +32.5 | -11.1 | -18.5 | +3.4 | +49.5 | +15.9 | -0.3 | -1.6 | +10.1 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.7 | -19.9 | +5.1 | -24.3 | +9.9 | -11.3 | -29.0 | +16.0 | +4.7 | -3.9 | -9.9 | -13.5 | -14.9 | -14.3 | -11.7 | -7.4 | -1.3 |
Relative (%) | +33.2 | -33.6 | +8.6 | -41.0 | +16.6 | -19.1 | -48.8 | +27.0 | +7.9 | -6.6 | -16.7 | -22.8 | -25.2 | -24.1 | -19.8 | -12.4 | -2.2 | |
Step | 83 | 84 | 86 | 87 | 89 | 90 | 91 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
Intervals
There are multiple ways to approach notation. The simplest method is to use the notations from 20edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. If maintaining accurate step compression in notation software is important, consider using the ups and downs notation from 182edo at every 9-degree step. With this method, the tonal difference will be less than 1 cent up to the 86th harmonic.
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 30 steps Limma = 16 steps Apotome = 14 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.333 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | v7m2 | 9 |
2 | 118.666 | 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | ^^m2 | 18 |
3 | 177.999 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vvvM2 | 27 |
4 | 237.332 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6 | ^6M2 | 36 |
5 | 296.665 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 45 |
6 | 355.998 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | v6M3 | 54 |
7 | 415.331 | 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^^M3 | 63 |
8 | 474.664 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3 | v44 | 72 |
9 | 533.997 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21, 18/13 | ^54 | 81 |
10 | 593.330 | 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | A4 | 90 |
11 | 652.663 | 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ~5 | 99 |
12 | 711.996 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^^5 | 108 |
13 | 771.329 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17 | v5m6 | 117 |
14 | 830.662 | 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^4m6 | 126 |
15 | 889.995 | 28/17, 5/3, 32/19, 27/16, 22/13, 17/10 | vM6 | 135 |
16 | 949.328 | 29/17, 12/7, 31/18, 19/11, 26/15, 7/4 | v6A6, ^6d7 | 144 |
17 | 1008.661 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | ^m7 | 153 |
18 | 1067.994 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | v4M7 | 162 |
19 | 1127.327 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | ^5M7 | 171 |
20 | 1186.660 | 2/1 | vv1 +1 oct | 180 |
21 | 1245.993 | 31/15, 29/14, 27/13, 25/12 | ^71 +1 oct | 189 |
22 | 1305.326 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | m2 +1 oct | 198 |
23 | 1364.659 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | v5M2 +1 oct | 207 |
24 | 1423.992 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^4M2 +1 oct | 216 |
25 | 1483.325 | 7/3, 26/11, 19/8, 31/13 | vvvm3 +1 oct | 225 |
26 | 1542.657 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^6m3 +1 oct | 234 |
27 | 1601.990 | 5/2, 28/11, 23/9 | ^M3 +1 oct | 243 |
28 | 1661.323 | 18/7, 31/12, 13/5, 21/8, 29/11 | v64 +1 oct | 252 |
29 | 1720.656 | 8/3, 27/10, 19/7, 30/11 | ^^^4 +1 oct | 261 |
30 | 1779.989 | 11/4, 25/9, 14/5, 31/11, 17/6 | vvA4 +1 oct | 270 |
31 | 1839.322 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^5d5 +1 oct | 279 |
32 | 1898.655 | 3/1 | P5 +1 oct | 288 |
33 | 1957.988 | 31/10, 28/9, 25/8, 22/7 | v7m6 +1 oct | 297 |
34 | 2017.321 | 19/6, 16/5, 29/9, 13/4 | ^^m6 +1 oct | 306 |
35 | 2076.654 | 23/7, 10/3, 27/8 | vvvM6 +1 oct | 315 |
36 | 2135.987 | 17/5, 24/7, 31/9 | ^6M6 +1 oct | 324 |
37 | 2195.320 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 333 |
38 | 2254.653 | 29/8, 11/3, 26/7 | v6M7 +1 oct | 342 |
39 | 2313.986 | 15/4, 19/5, 23/6, 27/7 | ^^^M7 +1 oct | 351 |
40 | 2373.319 | 31/8, 4/1 | v41 +2 oct | 360 |
41 | 2432.652 | 29/7 | ^51 +2 oct | 369 |
42 | 2491.985 | 25/6, 21/5, 17/4, 30/7 | vvm2 +2 oct | 378 |
43 | 2551.318 | 13/3, 22/5, 31/7 | ~2 +2 oct | 387 |
44 | 2610.651 | 9/2, 32/7 | ^^M2 +2 oct | 396 |
45 | 2669.984 | 23/5, 14/3, 19/4 | v5m3 +2 oct | 405 |
46 | 2729.317 | 24/5, 29/6 | ^4m3 +2 oct | 414 |
47 | 2788.650 | 5/1 | vM3 +2 oct | 423 |
48 | 2847.983 | 31/6, 26/5, 21/4 | v6A3 +2 oct, ^6d4 +2 oct | 432 |
49 | 2907.316 | 16/3, 27/5 | ^4 +2 oct | 441 |
50 | 2966.649 | 11/2, 28/5 | v4A4 +2 oct | 450 |
51 | 3025.982 | 17/3, 23/4, 29/5 | ^^^d5 +2 oct | 459 |
52 | 3085.315 | 6/1 | vv5 +2 oct | 468 |
53 | 3144.648 | 31/5, 25/4 | ^75 +2 oct | 477 |
54 | 3203.981 | 19/3, 32/5 | m6 +2 oct | 486 |
55 | 3263.314 | 13/2, 20/3 | v5M6 +2 oct | 495 |
56 | 3322.647 | 27/4 | ^4M6 +2 oct | 504 |
57 | 3381.980 | 7/1 | vvvm7 +2 oct | 513 |
58 | 3441.313 | 29/4, 22/3 | ^6m7 +2 oct | 522 |
59 | 3500.646 | 15/2, 23/3 | ^M7 +2 oct | 531 |
60 | 3559.979 | 31/4 | v61 +3 oct | 540 |
61 | 3619.312 | 8/1 | ^^^1 +3 oct | 549 |
62 | 3678.645 | 25/3, 17/2 | v4m2 +3 oct | 558 |
63 | 3737.978 | 26/3 | ^5m2 +3 oct | 567 |
64 | 3797.311 | 9/1 | M2 +3 oct | 576 |
65 | 3856.644 | 28/3 | v7m3 +3 oct | 585 |
66 | 3915.977 | 19/2, 29/3 | ^^m3 +3 oct | 594 |
67 | 3975.310 | 10/1 | vvvM3 +3 oct | 603 |
68 | 4034.643 | 31/3 | ^6M3 +3 oct | 612 |
69 | 4093.976 | 21/2, 32/3 | v4 +3 oct | 621 |
70 | 4153.309 | 11/1 | v6A4 +3 oct | 630 |
71 | 4212.642 | 23/2 | ^d5 +3 oct | 639 |
72 | 4271.975 | v45 +3 oct | 648 | |
73 | 4331.308 | 12/1 | ^55 +3 oct | 657 |
74 | 4390.641 | 25/2 | vvm6 +3 oct | 666 |
75 | 4449.974 | 13/1 | ~6 +3 oct | 675 |
76 | 4509.307 | 27/2 | ^^M6 +3 oct | 684 |
77 | 4568.640 | 14/1 | v5m7 +3 oct | 693 |
78 | 4627.972 | 29/2 | ^4m7 +3 oct | 702 |
79 | 4687.305 | 15/1 | vM7 +3 oct | 711 |
80 | 4746.638 | 31/2 | v6A7 +3 oct, ^6d1 +4 oct | 720 |
81 | 4805.971 | 16/1 | ^1 +4 oct | 729 |
82 | 4865.304 | v6m2 +4 oct | 738 | |
83 | 4924.637 | 17/1 | ^^^m2 +4 oct | 747 |
84 | 4983.970 | 18/1 | vvM2 +4 oct | 756 |
85 | 5043.303 | ^7M2 +4 oct | 765 | |
86 | 5102.636 | 19/1 | m3 +4 oct | 774 |
87 | 5161.969 | 20/1 | v5M3 +4 oct | 783 |
88 | 5221.302 | ^4M3 +4 oct | 792 | |
89 | 5280.635 | 21/1 | vvv4 +4 oct | 801 |
90 | 5339.968 | 22/1 | ^64 +4 oct | 810 |
91 | 5399.301 | 23/1 | ^A4 +4 oct, vd5 +4 oct | 819 |
92 | 5458.634 | v65 +4 oct | 828 | |
93 | 5517.967 | 24/1 | ^^^5 +4 oct | 837 |
94 | 5577.300 | 25/1 | v4m6 +4 oct | 846 |
95 | 5636.633 | 26/1 | ^5m6 +4 oct | 855 |
96 | 5695.966 | 27/1 | M6 +4 oct | 864 |
97 | 5755.299 | 28/1 | v7m7 +4 oct | 873 |
98 | 5814.632 | 29/1 | ^^m7 +4 oct | 882 |
99 | 5873.965 | 30/1 | vvvM7 +4 oct | 891 |
100 | 5933.298 | 31/1 | ^6M7 +4 oct | 900 |
101 | 5992.631 | 32/1 | v1 +5 oct | 909 |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 71zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | +0.186 | +0.314 |
11/5 | +0.346 | +0.583 |
17/8 | -0.370 | -0.624 |
31/22 | +0.388 | +0.654 |
21/13 | -0.408 | -0.688 |
25/19 | +0.451 | +0.759 |
26/3 | +0.595 | +1.003 |
30/29 | -0.641 | -1.081 |
31/10 | +0.733 | +1.236 |
32/9 | +0.770 | +1.297 |
15/14 | +0.777 | +1.309 |
19/16 | +0.848 | +1.429 |
15/1 | +0.963 | +1.623 |
23/12 | -1.007 | -1.698 |
27/10 | -1.105 | -1.863 |
25/16 | +1.299 | +2.189 |
29/28 | +1.418 | +2.390 |
27/22 | -1.451 | -2.445 |
31/2 | -1.603 | -2.702 |
29/2 | +1.605 | +2.705 |
29/6 | -1.695 | -2.857 |
31/28 | -1.789 | -3.016 |
31/27 | +1.839 | +3.099 |
11/1 | -1.991 | -3.355 |
14/11 | +2.177 | +3.669 |
23/4 | +2.292 | +3.864 |
5/1 | -2.336 | -3.938 |
14/5 | +2.523 | +4.252 |
32/27 | -2.530 | -4.264 |
31/30 | -2.566 | -4.325 |
25/11 | -2.682 | -4.520 |
26/9 | -2.705 | -4.559 |
19/5 | -2.787 | -4.697 |
24/7 | -2.858 | -4.817 |
26/15 | +2.931 | +4.940 |
15/11 | +2.954 | +4.979 |
14/3 | -3.113 | -5.247 |
19/11 | -3.133 | -5.280 |
31/29 | -3.208 | -5.406 |
3/1 | +3.300 | +5.561 |
27/2 | -3.442 | -5.800 |
16/13 | +3.474 | +5.856 |
29/22 | +3.595 | +6.060 |
28/27 | +3.628 | +6.115 |
16/5 | -3.635 | -6.127 |
24/17 | +3.670 | +6.185 |
13/7 | +3.708 | +6.250 |
21/16 | -3.883 | -6.544 |
26/1 | +3.894 | +6.564 |
29/10 | +3.941 | +6.642 |
16/11 | -3.981 | -6.709 |
32/3 | +4.069 | +6.858 |
19/13 | +4.323 | +7.285 |
32/31 | -4.369 | -7.363 |
10/9 | +4.405 | +7.424 |
23/20 | +4.629 | +7.801 |
25/1 | -4.673 | -7.875 |
21/19 | -4.731 | -7.974 |
22/9 | +4.750 | +8.006 |
25/13 | +4.773 | +8.045 |
25/14 | -4.859 | -8.190 |
31/6 | -4.903 | -8.263 |
29/18 | -4.995 | -8.418 |
29/27 | +5.046 | +8.505 |
19/1 | -5.123 | -8.635 |
31/9 | +5.138 | +8.660 |
25/21 | +5.182 | +8.733 |
11/3 | -5.290 | -8.916 |
19/14 | -5.310 | -8.949 |
5/3 | -5.636 | -9.499 |
26/11 | +5.885 | +9.919 |
16/1 | -5.971 | -10.064 |
27/26 | +6.004 | +10.120 |
19/15 | -6.087 | -10.258 |
8/7 | -6.158 | -10.378 |
26/5 | +6.231 | +10.502 |
32/15 | +6.406 | +10.796 |
14/9 | -6.413 | -10.808 |
17/7 | -6.528 | -11.002 |
24/13 | -6.566 | -11.067 |
9/1 | +6.599 | +11.122 |
9/2 | -6.741 | -11.362 |
28/9 | +6.928 | +11.676 |
16/15 | -6.935 | -11.688 |
13/5 | -7.110 | -11.982 |
16/7 | +7.183 | +12.106 |
32/1 | +7.369 | +12.420 |
13/11 | -7.455 | -12.565 |
21/5 | -7.518 | -12.671 |
32/29 | -7.576 | -12.769 |
10/3 | +7.704 | +12.985 |
31/26 | +7.843 | +13.219 |
21/11 | -7.864 | -13.253 |
25/3 | -7.972 | -13.437 |
19/7 | +8.031 | +13.535 |
22/3 | +8.050 | +13.568 |
31/18 | -8.202 | -13.824 |
29/9 | +8.346 | +14.066 |
19/3 | -8.423 | -14.196 |
31/3 | +8.438 | +14.221 |
25/7 | +8.481 | +14.294 |
26/25 | +8.567 | +14.439 |
11/9 | -8.590 | -14.478 |
9/5 | +8.936 | +15.060 |
26/19 | +9.018 | +15.199 |
23/18 | +9.033 | +15.225 |
16/3 | -9.271 | -15.625 |
32/11 | +9.360 | +15.775 |
29/20 | -9.399 | -15.842 |
13/1 | -9.446 | -15.920 |
21/8 | +9.457 | +15.940 |
14/13 | +9.632 | +16.234 |
17/12 | +9.671 | +16.299 |
32/5 | +9.705 | +16.357 |
27/14 | +9.712 | +16.369 |
21/17 | +9.828 | +16.563 |
21/1 | -9.854 | -16.609 |
13/8 | +9.866 | +16.628 |
27/1 | +9.899 | +16.684 |
3/2 | -10.041 | -16.923 |
28/3 | +10.227 | +17.237 |
17/13 | -10.236 | -17.252 |
22/15 | +10.386 | +17.505 |
15/13 | +10.409 | +17.544 |
23/17 | -10.678 | -17.997 |
31/15 | +10.774 | +18.159 |
7/5 | -10.818 | -18.232 |
24/19 | -10.889 | -18.352 |
10/1 | +11.004 | +18.546 |
23/8 | -11.048 | -18.620 |
29/26 | +11.051 | +18.625 |
11/7 | +11.163 | +18.815 |
25/9 | -11.272 | -18.998 |
25/24 | +11.339 | +19.112 |
22/1 | +11.350 | +19.129 |
31/14 | +11.551 | +19.468 |
29/3 | +11.645 | +19.627 |
19/9 | -11.723 | -19.757 |
29/4 | -11.736 | -19.779 |
31/1 | +11.738 | +19.782 |
27/11 | +11.890 | +20.039 |
32/25 | +12.042 | +20.295 |
27/5 | +12.235 | +20.621 |
23/6 | +12.333 | +20.786 |
15/2 | -12.377 | -20.860 |
32/19 | +12.492 | +21.055 |
28/15 | +12.564 | +21.175 |
16/9 | -12.571 | -21.187 |
31/20 | -12.607 | -21.248 |
13/3 | -12.746 | -21.481 |
17/4 | +12.970 | +21.860 |
11/10 | -12.995 | -21.901 |
7/1 | -13.154 | -22.170 |
2/1 | +13.340 | +22.484 |
28/1 | +13.527 | +22.798 |
24/5 | -13.676 | -23.049 |
22/5 | +13.686 | +23.067 |
17/16 | -13.711 | -23.108 |
31/11 | +13.728 | +23.138 |
26/21 | +13.749 | +23.172 |
29/15 | +13.982 | +23.565 |
24/11 | -14.021 | -23.632 |
29/23 | -14.028 | -23.643 |
31/5 | +14.074 | +23.720 |
15/7 | +14.117 | +23.793 |
19/8 | +14.188 | +23.913 |
30/1 | +14.304 | +24.107 |
24/23 | +14.348 | +24.182 |
27/20 | -14.446 | -24.347 |
19/17 | +14.559 | +24.537 |
27/25 | +14.572 | +24.559 |
25/8 | +14.639 | +24.673 |
30/23 | -14.669 | -24.724 |
29/14 | +14.759 | +24.874 |
31/4 | -14.943 | -25.185 |
29/1 | +14.945 | +25.189 |
25/17 | +15.009 | +25.297 |
27/19 | +15.022 | +25.318 |
29/12 | -15.035 | -25.341 |
20/17 | -15.307 | -25.798 |
11/2 | -15.331 | -25.839 |
28/23 | -15.446 | -26.033 |
28/11 | +15.517 | +26.153 |
23/2 | +15.633 | +26.347 |
5/2 | -15.677 | -26.422 |
28/5 | +15.863 | +26.736 |
27/16 | +15.870 | +26.748 |
24/1 | -16.012 | -26.987 |
25/22 | -16.022 | -27.004 |
13/9 | -16.045 | -27.043 |
19/10 | -16.127 | -27.181 |
12/7 | -16.199 | -27.301 |
30/11 | +16.294 | +27.463 |
31/25 | +16.410 | +27.658 |
7/3 | -16.454 | -27.731 |
22/19 | +16.473 | +27.764 |
6/1 | +16.640 | +28.045 |
27/4 | -16.782 | -28.284 |
32/13 | +16.815 | +28.340 |
31/19 | +16.861 | +28.417 |
29/11 | +16.936 | +28.544 |
8/5 | -16.975 | -28.610 |
26/7 | +17.048 | +28.734 |
23/7 | -17.206 | -28.999 |
32/21 | +17.223 | +29.028 |
31/23 | -17.236 | -29.049 |
29/5 | +17.281 | +29.126 |
11/8 | +17.321 | +29.193 |
17/5 | -17.346 | -29.234 |
23/22 | +17.623 | +29.703 |
17/11 | -17.691 | -29.817 |
31/16 | +17.709 | +29.847 |
20/9 | +17.745 | +29.908 |
23/10 | +17.969 | +30.285 |
25/2 | -18.013 | -30.359 |
28/25 | +18.200 | +30.674 |
31/12 | -18.243 | -30.747 |
19/2 | -18.464 | -31.119 |
11/6 | -18.631 | -31.400 |
28/19 | +18.650 | +31.433 |
6/5 | +18.976 | +31.983 |
27/23 | -19.074 | -32.148 |
8/1 | -19.312 | -32.548 |
27/13 | +19.345 | +32.604 |
30/19 | +19.427 | +32.742 |
7/4 | +19.498 | +32.862 |
29/25 | +19.618 | +33.064 |
17/1 | -19.682 | -33.172 |
18/17 | -19.711 | -33.222 |
9/7 | +19.753 | +33.292 |
17/14 | -19.868 | -33.486 |
13/12 | +19.907 | +33.551 |
18/1 | +19.940 | +33.606 |
29/19 | +20.068 | +33.823 |
9/4 | -20.082 | -33.845 |
15/8 | +20.275 | +34.172 |
13/10 | -20.450 | -34.466 |
23/21 | -20.506 | -34.560 |
32/7 | +20.523 | +34.589 |
17/15 | -20.645 | -34.796 |
22/13 | +20.796 | +35.049 |
21/10 | -20.858 | -35.155 |
23/13 | -20.914 | -35.249 |
29/16 | +20.917 | +35.253 |
20/3 | +21.045 | +35.469 |
31/13 | +21.183 | +35.703 |
22/21 | +21.204 | +35.737 |
25/6 | -21.313 | -35.921 |
31/21 | +21.592 | +36.391 |
32/23 | -21.604 | -36.412 |
19/6 | -21.763 | -36.680 |
20/7 | -21.835 | -36.800 |
18/11 | +21.930 | +36.961 |
18/5 | +22.276 | +37.544 |
23/9 | +22.374 | +37.709 |
8/3 | -22.611 | -38.109 |
13/2 | -22.786 | -38.404 |
21/4 | +22.798 | +38.424 |
28/13 | +22.973 | +38.718 |
17/3 | -22.982 | -38.733 |
17/6 | +23.011 | +38.783 |
27/7 | +23.053 | +38.853 |
21/2 | -23.195 | -39.093 |
13/4 | +23.206 | +39.112 |
4/3 | +23.381 | +39.407 |
26/17 | +23.576 | +39.736 |
30/13 | +23.750 | +40.028 |
10/7 | +24.158 | +40.716 |
19/12 | +24.229 | +40.836 |
20/1 | +24.344 | +41.030 |
23/16 | -24.388 | -41.104 |
29/13 | +24.391 | +41.109 |
22/7 | +24.504 | +41.299 |
25/18 | -24.612 | -41.482 |
25/12 | +24.680 | +41.595 |
29/17 | -24.706 | -41.639 |
29/21 | +24.799 | +41.797 |
31/7 | +24.891 | +41.952 |
19/18 | -25.063 | -42.241 |
29/8 | -25.076 | -42.263 |
26/23 | -25.079 | -42.268 |
21/20 | +25.134 | +42.361 |
23/19 | -25.237 | -42.534 |
30/17 | -25.347 | -42.721 |
20/13 | -25.543 | -43.050 |
23/3 | +25.673 | +43.270 |
25/23 | +25.687 | +43.293 |
15/4 | -25.718 | -43.344 |
9/8 | +25.911 | +43.671 |
13/6 | -26.086 | -43.965 |
28/17 | -26.124 | -44.030 |
18/7 | -26.239 | -44.224 |
17/9 | -26.281 | -44.294 |
17/2 | +26.311 | +44.344 |
20/11 | +26.335 | +44.385 |
7/2 | -26.494 | -44.654 |
4/1 | +26.681 | +44.968 |
12/5 | -27.016 | -45.533 |
32/17 | +27.051 | +45.592 |
12/11 | -27.362 | -46.116 |
30/7 | +27.458 | +46.277 |
19/4 | +27.529 | +46.397 |
31/24 | +27.750 | +46.769 |
31/17 | -27.913 | -47.045 |
25/4 | +27.979 | +47.157 |
23/15 | +28.010 | +47.208 |
23/5 | -28.023 | -47.231 |
29/7 | +28.099 | +47.358 |
31/8 | -28.284 | -47.669 |
22/17 | -28.301 | -47.699 |
23/11 | -28.369 | -47.813 |
29/24 | -28.376 | -47.824 |
17/10 | +28.647 | +48.282 |
11/4 | -28.671 | -48.323 |
23/14 | +28.787 | +48.517 |
23/1 | +28.973 | +48.831 |
5/4 | -29.017 | -48.906 |
27/8 | +29.211 | +49.232 |
12/1 | -29.353 | -49.471 |
18/13 | +29.386 | +49.526 |
20/19 | +29.468 | +49.665 |
7/6 | +29.539 | +49.785 |
27/17 | +29.581 | +49.856 |
Record on the Riemann zeta function with prime 2 removed
71zpi sets a height record on the Riemann zeta function with prime 2 removed. The previous record is 53zpi and the next one is 93zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with prime 2 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
53zpi | 16.3979501311478 | 73.1798786069366 | 2.518818 | 16edo | 1170.87805771099 | 16.4044889390925 | 73.1507092025500 | 4.100909 | 16edo | 1170.41134724080 |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 20edo | 1186.65961344942 | 20.2459529213541 | 59.2711049295348 | 4.137236 | 20edo | 1185.42209859070 |
93zpi | 24.5782550666850 | 48.8236449961234 | 2.810487 | 25edo | 1220.59112490308 | 24.5738316304204 | 48.8324335434323 | 4.665720 | 25edo | 1220.81083858581 |
71zpi with prime 2 removed
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.6 | -5.3 | -29.2 | -0.6 | -19.9 | +9.6 | +15.5 | -10.6 | -15.1 | -2.3 | +24.8 | +4.8 | -5.0 | -5.9 | +1.0 |
Relative (%) | -24.6 | -8.9 | -49.2 | -1.0 | -33.5 | +16.2 | +26.2 | -17.8 | -25.6 | -3.9 | +41.9 | +8.1 | -8.4 | -9.9 | +1.6 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.5 | -25.1 | -0.2 | +29.5 | +4.3 | -16.9 | +24.7 | +10.3 | -1.1 | -9.8 | -15.8 | -19.5 | -21.0 | -20.4 | -17.9 | -13.6 | -7.6 | -0.0 |
Relative (%) | +24.5 | -42.4 | -0.3 | +49.8 | +7.3 | -28.5 | +41.6 | +17.3 | -1.9 | -16.5 | -26.7 | -32.9 | -35.4 | -34.5 | -30.2 | -23.0 | -12.9 | -0.1 | |
Step | 83 | 84 | 86 | 88 | 89 | 90 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 13 steps Limma = 8 steps Apotome = 5 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.333 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | vA1, ^d2 | 4 |
2 | 118.666 | 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | m2 | 8 |
3 | 177.999 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vM2 | 12 |
4 | 237.332 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6 | vvA2 | 16 |
5 | 296.665 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 20 |
6 | 355.998 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | vvM3 | 24 |
7 | 415.331 | 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^M3 | 28 |
8 | 474.664 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3 | vv4 | 32 |
9 | 533.997 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21, 18/13 | ^^4 | 36 |
10 | 593.330 | 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | ^A4 | 40 |
11 | 652.663 | 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ^^d5 | 44 |
12 | 711.996 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^5 | 48 |
13 | 771.329 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17 | ^^d6 | 52 |
14 | 830.662 | 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^m6 | 56 |
15 | 889.995 | 28/17, 5/3, 32/19, 27/16, 22/13, 17/10 | M6 | 60 |
16 | 949.328 | 29/17, 12/7, 31/18, 19/11, 26/15, 7/4 | vA6, ^d7 | 64 |
17 | 1008.661 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | m7 | 68 |
18 | 1067.994 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | vM7 | 72 |
19 | 1127.327 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | vvA7 | 76 |
20 | 1186.660 | 2/1 | v1 +1 oct | 80 |
21 | 1245.993 | 31/15, 29/14, 27/13, 25/12 | vvA1 +1 oct | 84 |
22 | 1305.326 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | vm2 +1 oct | 88 |
23 | 1364.659 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | vvM2 +1 oct | 92 |
24 | 1423.992 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^^M2 +1 oct | 96 |
25 | 1483.325 | 7/3, 26/11, 19/8, 31/13 | vvm3 +1 oct | 100 |
26 | 1542.657 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^^m3 +1 oct | 104 |
27 | 1601.990 | 5/2, 28/11, 23/9 | ^M3 +1 oct | 108 |
28 | 1661.323 | 18/7, 31/12, 13/5, 21/8, 29/11 | ^^d4 +1 oct | 112 |
29 | 1720.656 | 8/3, 27/10, 19/7, 30/11 | ^4 +1 oct | 116 |
30 | 1779.989 | 11/4, 25/9, 14/5, 31/11, 17/6 | A4 +1 oct | 120 |
31 | 1839.322 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^d5 +1 oct | 124 |
32 | 1898.655 | 3/1 | P5 +1 oct | 128 |
33 | 1957.988 | 31/10, 28/9, 25/8, 22/7 | vA5 +1 oct, ^d6 +1 oct | 132 |
34 | 2017.321 | 19/6, 16/5, 29/9, 13/4 | m6 +1 oct | 136 |
35 | 2076.654 | 23/7, 10/3, 27/8 | vM6 +1 oct | 140 |
36 | 2135.987 | 17/5, 24/7, 31/9 | vvA6 +1 oct | 144 |
37 | 2195.320 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 148 |
38 | 2254.653 | 29/8, 11/3, 26/7 | vvM7 +1 oct | 152 |
39 | 2313.986 | 15/4, 19/5, 23/6, 27/7 | ^^M7 +1 oct | 156 |
40 | 2373.319 | 31/8, 4/1 | vv1 +2 oct | 160 |
41 | 2432.652 | 29/7 | ^^1 +2 oct | 164 |
42 | 2491.985 | 25/6, 21/5, 17/4, 30/7 | vvm2 +2 oct | 168 |
43 | 2551.318 | 13/3, 22/5, 31/7 | ^^m2 +2 oct | 172 |
44 | 2610.651 | 9/2, 32/7 | ^M2 +2 oct | 176 |
45 | 2669.984 | 23/5, 14/3, 19/4 | ^^d3 +2 oct | 180 |
46 | 2729.317 | 24/5, 29/6 | ^m3 +2 oct | 184 |
47 | 2788.650 | 5/1 | M3 +2 oct | 188 |
48 | 2847.983 | 31/6, 26/5, 21/4 | vA3 +2 oct, ^d4 +2 oct | 192 |
49 | 2907.316 | 16/3, 27/5 | P4 +2 oct | 196 |
50 | 2966.649 | 11/2, 28/5 | vA4 +2 oct | 200 |
51 | 3025.982 | 17/3, 23/4, 29/5 | d5 +2 oct | 204 |
52 | 3085.315 | 6/1 | v5 +2 oct | 208 |
53 | 3144.648 | 31/5, 25/4 | vvA5 +2 oct | 212 |
54 | 3203.981 | 19/3, 32/5 | vm6 +2 oct | 216 |
55 | 3263.314 | 13/2, 20/3 | vvM6 +2 oct | 220 |
56 | 3322.647 | 27/4 | ^^M6 +2 oct | 224 |
57 | 3381.980 | 7/1 | vvm7 +2 oct | 228 |
58 | 3441.313 | 29/4, 22/3 | ^^m7 +2 oct | 232 |
59 | 3500.646 | 15/2, 23/3 | ^M7 +2 oct | 236 |
60 | 3559.979 | 31/4 | ^^d1 +3 oct | 240 |
61 | 3619.312 | 8/1 | ^1 +3 oct | 244 |
62 | 3678.645 | 25/3, 17/2 | ^^d2 +3 oct | 248 |
63 | 3737.978 | 26/3 | ^m2 +3 oct | 252 |
64 | 3797.311 | 9/1 | M2 +3 oct | 256 |
65 | 3856.644 | 28/3 | vA2 +3 oct, ^d3 +3 oct | 260 |
66 | 3915.977 | 19/2, 29/3 | m3 +3 oct | 264 |
67 | 3975.310 | 10/1 | vM3 +3 oct | 268 |
68 | 4034.643 | 31/3 | vvA3 +3 oct | 272 |
69 | 4093.976 | 21/2, 32/3 | v4 +3 oct | 276 |
70 | 4153.309 | 11/1 | vvA4 +3 oct | 280 |
71 | 4212.642 | 23/2 | vd5 +3 oct | 284 |
72 | 4271.975 | vv5 +3 oct | 288 | |
73 | 4331.308 | 12/1 | ^^5 +3 oct | 292 |
74 | 4390.641 | 25/2 | vvm6 +3 oct | 296 |
75 | 4449.974 | 13/1 | ^^m6 +3 oct | 300 |
76 | 4509.307 | 27/2 | ^M6 +3 oct | 304 |
77 | 4568.640 | 14/1 | ^^d7 +3 oct | 308 |
78 | 4627.972 | 29/2 | ^m7 +3 oct | 312 |
79 | 4687.305 | 15/1 | M7 +3 oct | 316 |
80 | 4746.638 | 31/2 | vA7 +3 oct, ^d1 +4 oct | 320 |
81 | 4805.971 | 16/1 | P1 +4 oct | 324 |
82 | 4865.304 | vA1 +4 oct, ^d2 +4 oct | 328 | |
83 | 4924.637 | 17/1 | m2 +4 oct | 332 |
84 | 4983.970 | 18/1 | vM2 +4 oct | 336 |
85 | 5043.303 | vvA2 +4 oct | 340 | |
86 | 5102.636 | 19/1 | vm3 +4 oct | 344 |
87 | 5161.969 | 20/1 | vvM3 +4 oct | 348 |
88 | 5221.302 | ^^M3 +4 oct | 352 | |
89 | 5280.635 | 21/1 | vv4 +4 oct | 356 |
90 | 5339.968 | 22/1 | ^^4 +4 oct | 360 |
91 | 5399.301 | 23/1 | ^A4 +4 oct | 364 |
92 | 5458.634 | ^^d5 +4 oct | 368 | |
93 | 5517.967 | 24/1 | ^5 +4 oct | 372 |
94 | 5577.300 | 25/1 | ^^d6 +4 oct | 376 |
95 | 5636.633 | 26/1 | ^m6 +4 oct | 380 |
96 | 5695.966 | 27/1 | M6 +4 oct | 384 |
97 | 5755.299 | 28/1 | vA6 +4 oct, ^d7 +4 oct | 388 |
98 | 5814.632 | 29/1 | m7 +4 oct | 392 |
99 | 5873.965 | 30/1 | vM7 +4 oct | 396 |
100 | 5933.298 | 31/1 | vvA7 +4 oct | 400 |
101 | 5992.631 | 32/1 | v1 +5 oct | 404 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | +0.186 | +0.314 |
11/5 | +0.346 | +0.583 |
17/8 | -0.370 | -0.624 |
31/22 | +0.388 | +0.654 |
21/13 | -0.408 | -0.688 |
25/19 | +0.451 | +0.759 |
26/3 | +0.595 | +1.003 |
30/29 | -0.641 | -1.081 |
31/10 | +0.733 | +1.236 |
32/9 | +0.770 | +1.297 |
15/14 | +0.777 | +1.309 |
19/16 | +0.848 | +1.429 |
15/1 | +0.963 | +1.623 |
23/12 | -1.007 | -1.698 |
27/10 | -1.105 | -1.863 |
25/16 | +1.299 | +2.189 |
29/28 | +1.418 | +2.390 |
27/22 | -1.451 | -2.445 |
31/2 | -1.603 | -2.702 |
29/2 | +1.605 | +2.705 |
29/6 | -1.695 | -2.857 |
31/28 | -1.789 | -3.016 |
31/27 | +1.839 | +3.099 |
11/1 | -1.991 | -3.355 |
14/11 | +2.177 | +3.669 |
23/4 | +2.292 | +3.864 |
5/1 | -2.336 | -3.938 |
14/5 | +2.523 | +4.252 |
32/27 | -2.530 | -4.264 |
31/30 | -2.566 | -4.325 |
25/11 | -2.682 | -4.520 |
26/9 | -2.705 | -4.559 |
19/5 | -2.787 | -4.697 |
24/7 | -2.858 | -4.817 |
26/15 | +2.931 | +4.940 |
15/11 | +2.954 | +4.979 |
14/3 | -3.113 | -5.247 |
19/11 | -3.133 | -5.280 |
31/29 | -3.208 | -5.406 |
3/1 | +3.300 | +5.561 |
27/2 | -3.442 | -5.800 |
16/13 | +3.474 | +5.856 |
29/22 | +3.595 | +6.060 |
28/27 | +3.628 | +6.115 |
16/5 | -3.635 | -6.127 |
24/17 | +3.670 | +6.185 |
13/7 | +3.708 | +6.250 |
21/16 | -3.883 | -6.544 |
26/1 | +3.894 | +6.564 |
29/10 | +3.941 | +6.642 |
16/11 | -3.981 | -6.709 |
32/3 | +4.069 | +6.858 |
19/13 | +4.323 | +7.285 |
32/31 | -4.369 | -7.363 |
10/9 | +4.405 | +7.424 |
23/20 | +4.629 | +7.801 |
25/1 | -4.673 | -7.875 |
21/19 | -4.731 | -7.974 |
22/9 | +4.750 | +8.006 |
25/13 | +4.773 | +8.045 |
25/14 | -4.859 | -8.190 |
31/6 | -4.903 | -8.263 |
29/18 | -4.995 | -8.418 |
29/27 | +5.046 | +8.505 |
19/1 | -5.123 | -8.635 |
31/9 | +5.138 | +8.660 |
25/21 | +5.182 | +8.733 |
11/3 | -5.290 | -8.916 |
19/14 | -5.310 | -8.949 |
5/3 | -5.636 | -9.499 |
26/11 | +5.885 | +9.919 |
16/1 | -5.971 | -10.064 |
27/26 | +6.004 | +10.120 |
19/15 | -6.087 | -10.258 |
8/7 | -6.158 | -10.378 |
26/5 | +6.231 | +10.502 |
32/15 | +6.406 | +10.796 |
14/9 | -6.413 | -10.808 |
17/7 | -6.528 | -11.002 |
24/13 | -6.566 | -11.067 |
9/1 | +6.599 | +11.122 |
9/2 | -6.741 | -11.362 |
28/9 | +6.928 | +11.676 |
16/15 | -6.935 | -11.688 |
13/5 | -7.110 | -11.982 |
16/7 | +7.183 | +12.106 |
32/1 | +7.369 | +12.420 |
13/11 | -7.455 | -12.565 |
21/5 | -7.518 | -12.671 |
32/29 | -7.576 | -12.769 |
10/3 | +7.704 | +12.985 |
31/26 | +7.843 | +13.219 |
21/11 | -7.864 | -13.253 |
25/3 | -7.972 | -13.437 |
19/7 | +8.031 | +13.535 |
22/3 | +8.050 | +13.568 |
31/18 | -8.202 | -13.824 |
29/9 | +8.346 | +14.066 |
19/3 | -8.423 | -14.196 |
31/3 | +8.438 | +14.221 |
25/7 | +8.481 | +14.294 |
26/25 | +8.567 | +14.439 |
11/9 | -8.590 | -14.478 |
9/5 | +8.936 | +15.060 |
26/19 | +9.018 | +15.199 |
23/18 | +9.033 | +15.225 |
16/3 | -9.271 | -15.625 |
32/11 | +9.360 | +15.775 |
29/20 | -9.399 | -15.842 |
13/1 | -9.446 | -15.920 |
21/8 | +9.457 | +15.940 |
14/13 | +9.632 | +16.234 |
17/12 | +9.671 | +16.299 |
32/5 | +9.705 | +16.357 |
27/14 | +9.712 | +16.369 |
21/17 | +9.828 | +16.563 |
21/1 | -9.854 | -16.609 |
13/8 | +9.866 | +16.628 |
27/1 | +9.899 | +16.684 |
3/2 | -10.041 | -16.923 |
28/3 | +10.227 | +17.237 |
17/13 | -10.236 | -17.252 |
22/15 | +10.386 | +17.505 |
15/13 | +10.409 | +17.544 |
23/17 | -10.678 | -17.997 |
31/15 | +10.774 | +18.159 |
7/5 | -10.818 | -18.232 |
24/19 | -10.889 | -18.352 |
10/1 | +11.004 | +18.546 |
23/8 | -11.048 | -18.620 |
29/26 | +11.051 | +18.625 |
11/7 | +11.163 | +18.815 |
25/9 | -11.272 | -18.998 |
25/24 | +11.339 | +19.112 |
22/1 | +11.350 | +19.129 |
31/14 | +11.551 | +19.468 |
29/3 | +11.645 | +19.627 |
19/9 | -11.723 | -19.757 |
29/4 | -11.736 | -19.779 |
31/1 | +11.738 | +19.782 |
27/11 | +11.890 | +20.039 |
32/25 | +12.042 | +20.295 |
27/5 | +12.235 | +20.621 |
23/6 | +12.333 | +20.786 |
15/2 | -12.377 | -20.860 |
32/19 | +12.492 | +21.055 |
28/15 | +12.564 | +21.175 |
16/9 | -12.571 | -21.187 |
31/20 | -12.607 | -21.248 |
13/3 | -12.746 | -21.481 |
17/4 | +12.970 | +21.860 |
11/10 | -12.995 | -21.901 |
7/1 | -13.154 | -22.170 |
2/1 | +13.340 | +22.484 |
28/1 | +13.527 | +22.798 |
24/5 | -13.676 | -23.049 |
22/5 | +13.686 | +23.067 |
17/16 | -13.711 | -23.108 |
31/11 | +13.728 | +23.138 |
26/21 | +13.749 | +23.172 |
29/15 | +13.982 | +23.565 |
24/11 | -14.021 | -23.632 |
29/23 | -14.028 | -23.643 |
31/5 | +14.074 | +23.720 |
15/7 | +14.117 | +23.793 |
19/8 | +14.188 | +23.913 |
30/1 | +14.304 | +24.107 |
24/23 | +14.348 | +24.182 |
27/20 | -14.446 | -24.347 |
19/17 | +14.559 | +24.537 |
27/25 | +14.572 | +24.559 |
25/8 | +14.639 | +24.673 |
30/23 | -14.669 | -24.724 |
29/14 | +14.759 | +24.874 |
31/4 | -14.943 | -25.185 |
29/1 | +14.945 | +25.189 |
25/17 | +15.009 | +25.297 |
27/19 | +15.022 | +25.318 |
29/12 | -15.035 | -25.341 |
20/17 | -15.307 | -25.798 |
11/2 | -15.331 | -25.839 |
28/23 | -15.446 | -26.033 |
28/11 | +15.517 | +26.153 |
23/2 | +15.633 | +26.347 |
5/2 | -15.677 | -26.422 |
28/5 | +15.863 | +26.736 |
27/16 | +15.870 | +26.748 |
24/1 | -16.012 | -26.987 |
25/22 | -16.022 | -27.004 |
13/9 | -16.045 | -27.043 |
19/10 | -16.127 | -27.181 |
12/7 | -16.199 | -27.301 |
30/11 | +16.294 | +27.463 |
31/25 | +16.410 | +27.658 |
7/3 | -16.454 | -27.731 |
22/19 | +16.473 | +27.764 |
6/1 | +16.640 | +28.045 |
27/4 | -16.782 | -28.284 |
32/13 | +16.815 | +28.340 |
31/19 | +16.861 | +28.417 |
29/11 | +16.936 | +28.544 |
8/5 | -16.975 | -28.610 |
26/7 | +17.048 | +28.734 |
23/7 | -17.206 | -28.999 |
32/21 | +17.223 | +29.028 |
31/23 | -17.236 | -29.049 |
29/5 | +17.281 | +29.126 |
11/8 | +17.321 | +29.193 |
17/5 | -17.346 | -29.234 |
23/22 | +17.623 | +29.703 |
17/11 | -17.691 | -29.817 |
31/16 | +17.709 | +29.847 |
20/9 | +17.745 | +29.908 |
23/10 | +17.969 | +30.285 |
25/2 | -18.013 | -30.359 |
28/25 | +18.200 | +30.674 |
31/12 | -18.243 | -30.747 |
19/2 | -18.464 | -31.119 |
11/6 | -18.631 | -31.400 |
28/19 | +18.650 | +31.433 |
6/5 | +18.976 | +31.983 |
27/23 | -19.074 | -32.148 |
8/1 | -19.312 | -32.548 |
27/13 | +19.345 | +32.604 |
30/19 | +19.427 | +32.742 |
7/4 | +19.498 | +32.862 |
29/25 | +19.618 | +33.064 |
17/1 | -19.682 | -33.172 |
18/17 | -19.711 | -33.222 |
9/7 | +19.753 | +33.292 |
17/14 | -19.868 | -33.486 |
13/12 | +19.907 | +33.551 |
18/1 | +19.940 | +33.606 |
29/19 | +20.068 | +33.823 |
9/4 | -20.082 | -33.845 |
15/8 | +20.275 | +34.172 |
13/10 | -20.450 | -34.466 |
23/21 | -20.506 | -34.560 |
32/7 | +20.523 | +34.589 |
17/15 | -20.645 | -34.796 |
22/13 | +20.796 | +35.049 |
21/10 | -20.858 | -35.155 |
23/13 | -20.914 | -35.249 |
29/16 | +20.917 | +35.253 |
20/3 | +21.045 | +35.469 |
31/13 | +21.183 | +35.703 |
22/21 | +21.204 | +35.737 |
25/6 | -21.313 | -35.921 |
31/21 | +21.592 | +36.391 |
32/23 | -21.604 | -36.412 |
19/6 | -21.763 | -36.680 |
20/7 | -21.835 | -36.800 |
18/11 | +21.930 | +36.961 |
18/5 | +22.276 | +37.544 |
23/9 | +22.374 | +37.709 |
8/3 | -22.611 | -38.109 |
13/2 | -22.786 | -38.404 |
21/4 | +22.798 | +38.424 |
28/13 | +22.973 | +38.718 |
17/3 | -22.982 | -38.733 |
17/6 | +23.011 | +38.783 |
27/7 | +23.053 | +38.853 |
21/2 | -23.195 | -39.093 |
13/4 | +23.206 | +39.112 |
4/3 | +23.381 | +39.407 |
26/17 | +23.576 | +39.736 |
30/13 | +23.750 | +40.028 |
10/7 | +24.158 | +40.716 |
19/12 | +24.229 | +40.836 |
20/1 | +24.344 | +41.030 |
23/16 | -24.388 | -41.104 |
29/13 | +24.391 | +41.109 |
22/7 | +24.504 | +41.299 |
25/18 | -24.612 | -41.482 |
25/12 | +24.680 | +41.595 |
29/17 | -24.706 | -41.639 |
29/21 | +24.799 | +41.797 |
31/7 | +24.891 | +41.952 |
19/18 | -25.063 | -42.241 |
29/8 | -25.076 | -42.263 |
26/23 | -25.079 | -42.268 |
21/20 | +25.134 | +42.361 |
23/19 | -25.237 | -42.534 |
30/17 | -25.347 | -42.721 |
20/13 | -25.543 | -43.050 |
23/3 | +25.673 | +43.270 |
25/23 | +25.687 | +43.293 |
15/4 | -25.718 | -43.344 |
9/8 | +25.911 | +43.671 |
13/6 | -26.086 | -43.965 |
28/17 | -26.124 | -44.030 |
18/7 | -26.239 | -44.224 |
17/9 | -26.281 | -44.294 |
17/2 | +26.311 | +44.344 |
20/11 | +26.335 | +44.385 |
7/2 | -26.494 | -44.654 |
4/1 | +26.681 | +44.968 |
12/5 | -27.016 | -45.533 |
32/17 | +27.051 | +45.592 |
12/11 | -27.362 | -46.116 |
30/7 | +27.458 | +46.277 |
19/4 | +27.529 | +46.397 |
31/24 | +27.750 | +46.769 |
31/17 | -27.913 | -47.045 |
25/4 | +27.979 | +47.157 |
23/15 | +28.010 | +47.208 |
23/5 | -28.023 | -47.231 |
29/7 | +28.099 | +47.358 |
31/8 | -28.284 | -47.669 |
22/17 | -28.301 | -47.699 |
23/11 | -28.369 | -47.813 |
29/24 | -28.376 | -47.824 |
17/10 | +28.647 | +48.282 |
11/4 | -28.671 | -48.323 |
23/14 | +28.787 | +48.517 |
23/1 | +28.973 | +48.831 |
5/4 | -29.017 | -48.906 |
27/8 | +29.211 | +49.232 |
12/1 | -29.353 | -49.471 |
18/13 | +29.386 | +49.526 |
20/19 | +29.468 | +49.665 |
7/6 | +29.539 | +49.785 |
27/17 | +29.581 | +49.856 |