Fractional-octave temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
link to page for 1\29
Eliora (talk | contribs)
118th-octave temperaments: move all that to its own page
Line 312: Line 312:
{{Optimal ET sequence|legend=1|3219c, 4884, 8103, 12987}}, ...
{{Optimal ET sequence|legend=1|3219c, 4884, 8103, 12987}}, ...


== 118th-octave temperaments ==
[[118edo]] is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.


=== Parakleischis ===
118edo and its multiples are members of both [[parakleismic]] and [[Schismatic family|schismic]], and from this it derives its name.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 32805/32768, 1224440064/1220703125
[[Mapping]]: [{{val| 118 187 274 0 }}, {{val| 0 0 0 1 }}]
Mapping generators: ~15625/15552, ~7
[[Optimal tuning]] ([[POTE]]): ~7/4 = 968.7235
{{Optimal ET sequence|legend=1| 118, 236, 354, 472, 2242, 2714b, 3186b, 3658b }}
[[Badness]]: 0.145166
==== 11-limit ====
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 32805/32768, 137781/137500
Mapping: [{{val| 118 187 274 0 77 }}, {{val| 0 0 0 1 1 }}]
Optimal tuning (POTE): ~7/4 = 968.5117
{{Optimal ET sequence|legend=1| 118, 354, 472 }}
Badness: 0.049316
==== Centenniamajor ====
Named after the fact that 18 is the age of majority in most countries, and 100 (centennial) + 18 (major) = 118.
Subgroup: 2.3.5.7.11
Comma list: 32805/32768, 151263/151250, 1224440064/1220703125
Mapping: [{{val| 118 187 274 0 -420 }}, {{val| 0 0 0 2 5 }}]
Mapping generators: ~15625/15552, ~405504/153125
Optimal tuning (CTE): ~202752/153125 = 484.4837
{{Optimal ET sequence|legend=1| 354, 944e, 1298 }}
Badness: 0.357
===== 13-limit =====
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 32805/32768, 34398/34375, 384912/384475
Mapping: [{{val| 118 187 274 0 -420 271 }}, {{val| 0 0 0 2 5 1 }}]
Optimal tuning (CTE): ~8125/6144 = 484.4867
{{Optimal ET sequence|legend=1| 354, 944e, 1298 }}
Badness: 0.122
=== Oganesson ===
Named after the 118th element. In the 13-limit, the period corresponds to [[169/168]], and in the 17-limit, it corresponds also to [[170/169]], meaning that [[28561/28560]] is tempered out. As opposed to being an extension of parakleischis, this has the generator that splits the third harmonic into three equal parts.
In the 7-limit and 11-limit, the period corresponds to [[bronzisma]].
[[Subgroup]]: 2.3.5.7
[[Comma list]]: {{monzo| 30 10 -27 6 }}, {{monzo| 77 -20 -5 -12 }}
[[Mapping]]: [{{val| 118 0 274 643 }}, {{val| 0 3 0 -5 }}]
Mapping generators: ~2097152/2083725, ~1953125/1354752
[[Optimal tuning]] ([[CTE]]): ~1953125/1354752 = 634.0068
{{Optimal ET sequence|legend=1| 354, 2360, 2714, 3068, 3442, 3776, 7198cd, 10974bccdd }}
[[Badness]]: 2.66
==== 11-limit ====
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, {{monzo| 13 -1 4 -16 7 }}, {{monzo| 55 -7 -15 -2 -1 }}
Mapping: [{{val| 118 0 274 643 1094 }}, {{val| 0 3 0 -5 -11 }}]
Optimal tuning (CTE): ~1953125/1354752 = 634.0085
{{Optimal ET sequence|legend=1| 354, 3068e, 3442, 3776, 11682ccdde }}
Badness: 0.568
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 9801/9800, 537403776/537109375, 453874312332/453857421875
Mapping: [{{val| 118 0 274 643 1094 499}}, {{val| 0 3 0 -5 -11 -1}}]
Mapping generators: ~169/168, ~1124864/779625
Optimal tuning (CTE): ~1124864/779625 = 634.0087
{{Optimal ET sequence|legend=1| 354, 3068e, 3422, 3776 }}
Badness: 0.172
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 9801/9800, 34391/34375, 361250/361179, 562432/562275
Mapping:  [{{val| 118 0 274 643 1094 499 607 }}, {{val| 0 3 0 -5 -11 -1 2 }}]
Mapping generators: ~170/169, ~238/165
Optimal tuning (CTE): ~238/165 = 634.0080
{{Optimal ET sequence|legend=1| 354, 3068e, 3422, 3776 }}
Badness: 0.105


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Lists of temperaments]]
[[Category:Lists of temperaments]]

Revision as of 13:29, 10 June 2023

All temperaments on this page have a fractional-octave period.

Temperaments discussed elsewhere include:


44th-octave temperaments

One step of 44edo is very close to the septimal comma, 64/63. The relationship is preserved even up thousands of edos.

Ruthenium

Ruthenium is named after the 44th element, and can be expressed as the 1848 & 2684 temperament.

Subgroup: 2.3.5.7

Comma list: [-8  23 -5 -6, [51 -13 -1 -10

Mapping: [44 0 -386 263], 0 1 7 -2]]

Mapping generators: ~64/63, ~3

Optimal tuning (CTE): ~3/2 = 701.9420

Optimal ET sequence176, 660, 836, 1848, 2684, 4532, 19976, 24508, 29040, 33572

Badness: 0.111

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 1771561/1771470, 67110351/67108864

Mapping: [44 0 -386 263 -57], 0 1 7 -2 3]]

Optimal tuning (CTE): ~3/2 = 701.9429

Optiml GPV sequence: 176, 660, 836, 1848, 2684, 4532, 15444, 19976e

Badness: 0.0209

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 9801/9800, 196625/196608, 823680/823543, 1771561/1771470

Mapping: [44 0 -386 263 -57 1976], 0 1 7 -2 3 -26]]

Optimal tuning (CTE): ~3/2 = 701.939

Optiml GPV sequence: 836, 1848, 2684, 7216, 9900, 12584

Badness: 0.0396

56th-octave temperaments

Barium

One step of 56edo is close to a syntonic comma. Named after the 56th element, barium tempers out the [-225 224 -56 comma, which sets 56 syntonic commas equal to the octave. It can be expressed as the 224 & 2072 temperament.

Subgroup: 2.3.5

Comma list: [-225 224 -56

Mapping: [56 0 -225], 0 1 4]]

Mapping generators: ~81/80, ~3

Optimal tuning (CTE): ~3/2 = 701.9379

Optimal ET sequence224, 1176, 1400, 1624, 1848, 2072, 5992, 8064, 26264, 34328b, 42392b

Badness: 4.70

7-limit

Subgroup: 2.3.5.7

Comma list: [-12 29 -11 -3, [47 -7 -7 -7

Mapping: [56 0 -225 601], 0 1 4 -5]]

Optimal tuning (CTE): ~3/2 = 701.9433

Optimal ET sequence224, 1176, 1400, 1624, 1848, 2072, 5768, 7616, 17080, 24696cd

Badness: 0.227

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 1019215872/1019046875, 14765025303/14763950080

Mapping: [56 0 -225 601 460], 0 1 4 -5 -3]]

Optimal tuning (CTE): ~3/2 = 701.9431

Optimal ET sequence224, 1176, 1400, 1624, 1848, 3920, 5768, 7616, 21000cd, 28616cd

Badness: 0.0345

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 4225/4224, 9801/9800, 67392/67375, 26802913280/26795786661

Mapping: [56 0 -225 601 460 651], 0 1 4 -5 -3 -5]]

Optimal tuning (CTE): ~3/2 = 701.9431

Optimal ET sequence224, 1848, 2072, ...

61st-octave temperaments

Promethium

Promethium tempers out the dipromethia and can be described as the 183 & 2684 temperament. By tempering out 4100625/4100096 promethium identifies the diaschisma with 2025/2002 in the 13-limit and also in the 17-limit.

Subgroup: 2.3.5.7.11.13

Comma list: 10648/10647, 196625/196608, 4100625/4100096, 204800000/204788493

Mapping: [61 0 335 703 66 -161], 0 2 -4 -11 3 8]]

Mapping generators: ~2025/2002 = 1\61, ~6875/3969 = 950.970

Optimal tuning (CTE): ~6875/3969 = 950.970

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 14400/14399, 37180/37179, 121875/121856, 140800/140777, 3536379/3536000

Mapping: [61 0 335 703 66 -161 201], 0 2 -4 -11 3 8 1]]

Mapping generators: ~2025/2002 = 1\61, ~11907/6875 = 950.970

Optimal tuning (CTE): ~11907/6875 = 950.970

Optimal ET sequence183, 2684, ...

65th-octave temperaments

65edo is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.

Terbium

The name of terbium temperament comes from Terbium, the 65th element.

Subgroup: 2.3.5.7

Comma list: 32805/32768, 78732/78125

Mapping: [65 103 151 0], 0 0 0 1]]

Mapping generators: ~81/80, ~7

Optimal tuning (POTE): ~7/4 = 969.1359

Optimal ET sequence65, 130

Badness: 0.169778

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 4000/3993, 5632/5625

Mapping: [65 103 151 0 225], 0 0 0 1 0]]

Optimal tuning (POTE): ~7/4 = 969.5715

Optimal ET sequence65d, 130

Badness: 0.059966

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 2080/2079, 3584/3575

Mapping: [65 103 151 0 225 58], 0 0 0 1 0 1]]

Optimal tuning (POTE): ~7/4 = 969.9612

Optimal ET sequence65d, 130

Badness: 0.036267

91st-octave temperaments

Protactinium

Protactinium is described as the 364 & 1547 temperament and named after the 91st element.

Subgroup: 2.3.5.7.11.13

Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897

Mapping: [91 0 644 -33 1036 481], 0 1 -3 -2 -5 -1]]

Mapping generators: ~1728/1715, ~3

Optimal tuning (CTE): ~3/2 = 702.0195

Optimal ET sequence364, 819e, 1183, 1547

Badness: 0.0777

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384

Mapping: [91 0 644 -33 1036 481 -205], 0 1 -3 -2 -5 -1 4]]

Optimal tuning (CTE): ~3/2 = 702.0269

Optimal ET sequence364, 1183, 1547, 1911

Badness: 0.0582

111th-octave temperaments

Roentgenium

Roentgenium is defined as 4884 & 8103 in the 19-limit and is named after the 111th element. 111 is 37 x 3, and what's particularly remarkable about this temperament is that it still preserves the relationship of 11/8 to 37edo in EDOs the size of thousands. Developed for a musical composition in 8103edo by Eliora.

Subgroup: 2.3.5.7.11

Comma list: [-25 -12 -3 12  5, [-27  27  0  3 -7, [26  -8 -2  8 -9

Mapping: [111 111 2855 896 384], 0 1 -40 -9 0]]

Optimal tuning (CTE): ~3/2 = 701.964

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 31213/31212, 486400/486387, 633556/633555, 653429/653400, 1037232/1037153, 9714446/9713275, 24764600/24762387

Mapping: [111 111 2855 896 384 410 452 472], 0 1 -40 -9 0 -11 -25 7]]

Optimal tuning (CTE): ~3/2 = 701.9...

Optimal ET sequence3219c, 4884, 8103, 12987, ...