# The Flashmob

The Flashmob is a collection of temperaments of different ranks that all temper out 12376/12375, the flashma, a 17-limit comma associated with precise systems that model high-limit JI.

Temperaments discussed elsewhere include:

## Noletaland

Noletaland is described as 282 & 1323, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators (noleta-...) and tempers out the landscape comma (...-land). Noletaland reaches 13/11 in 2 generators, and 29/19 in 5. Then there's 44/25 in 4, and 152/115 in also 4.

Subgroup: 2.3.5.7.11.13.17

Comma list: 2058/2057, 12376/12375, 14875/14872, 43904/43875, 250047/250000

Mapping: [3 6 19 30 35 36 29], 0 -9 -87 -156 -178 -180 -121]]

Mapping generators: ~63/50 = 1\3, ~4725/4576 = 55.330

Optimal tuning (CTE): ~351/340 = 55.329

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 2926/2925, 3136/3135, 5985/5984, 12376/12375, 14875/14872, 256000/255879

Mapping: [3 6 19 30 35 36 29 18], 0 -9 -87 -156 -178 -180 -121 -38]]

Mapping generators: ~63/50 = 1\3, ~4725/4576 = 55.330

Optimal tuning (CTE): ~351/340 = 55.329

### 23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 2926/2925, 3136/3135, 5985/5984, 10626/10625, 12376/12375, 21736/21735, 256000/255879

Mapping: [3 6 19 30 35 36 29 18 31], 0 -9 -87 -156 -178 -180 -121 -38 -126]]

Mapping generators: ~63/50 = 1\3, ~4725/4576 = 55.330

Optimal tuning (CTE): ~4725/4576 = 55.330

### 29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 2926/2925, 3136/3135, 5104/5103, 5985/5984, 12376/12375, 21736/21735, 10626/10625, 256000/255879

Mapping: [3 6 19 30 35 36 29 18 31 19], 0 -9 -87 -156 -178 -180 -121 -38 -126 -32]]

Mapping generators: ~63/50 = 1\3, ~4725/4576 = 55.330

Optimal tuning (CTE): ~4725/4576 = 55.330

## Hafnium

Hafnium is a period-72 temperament created by temperament-merging 4320edo and 5544edo, equal temperaments notable for their high divisibility. Named after the 72nd element.

Subgroup: 2.3.5.7.11.13

Comma list: 9801/9800, 250047/250000, 184549376/184528125, 463373664/463203125

Mapping: [72 72 462 876 1302 1193], 0 1 -7 -16 -25 -22]]

Mapping generators: ~105/104 = 1\72, ~3/2 = 701.948

Optimal tuning (CTE): ~3/2 = 701.948

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 9801/9800, 12376/12375, 21879/21875, 194481/194480, 1713660/1713481, 97144749/97140736

Mapping: [72 72 462 876 1302 1193 547], 0 1 -7 -16 -25 -22 -6]]

Mapping generators: ~105/104 = 1\72, ~3/2 = 701.948

Optimal tuning (CTE): ~3/2 = 701.948

### 2.3.5.7.11.13.17.31 subgroup

Since 4320edo and 5544edo have good 31st and 37th harmonics, addition of these subgroups is prescribed.

Subgroup: 2.3.5.7.11.13.17.31

Comma list: 9801/9800, 10881/10880, 12376/12375, 57629/57624, 179712/179707, 61456384/61448625

Sval mapping: [72 72 462 876 1302 1193 547 356], 0 1 -7 -16 -25 -22 -6 6]]

Mapping generators: ~105/104 = 1\72, ~3/2 = 701.948

Optimal tuning (CTE): ~3/2 = 701.948

### 2.3.5.7.11.13.17.31.37 subgroup

37/22 is mapped to exact three-quarters of the octave.

Subgroup: 2.3.5.7.11.13.17.31

Comma list: 10881/10880, 12376/12375, 16576/16575, 93093/93092, 954304/954261, 2737889/2737800, 126607131/126605120

Sval mapping: [72 72 462 876 1302 1193 547 356 378], 0 1 -7 -16 -25 -22 -6 6 -25]]

Mapping generators: ~105/104 = 1\72, ~3/2 = 701.948

Optimal tuning (CTE): ~3/2 = 701.948

## Iridium

Iridium is named after 77th element, being period-77.

Subgroup: 2.3.5.7.11.13.17

Comma list: 12376/12375, 63792/67375, 194481/194480, 396833125/396829664, 112435984089/112394240000

Mapping: [77 1 203 313 339 527 460], 0 5 -1 -4 -3 -10 -6]]

Mapping generators: ~429/425 = 1\77, 975/784 = 377.269