35th-octave temperaments

From Xenharmonic Wiki
(Redirected from Bromine)
Jump to navigation Jump to search


35edo is a tuning system that's not remarkable in its own right from a regular temperament theory perspective, but some of its multiples are either zeta edos like 3395edo, have an exceptionally precise perfect fifth like 665edo, or have high consistency limits like 525edo. In addition, one step of 35edo is close to 50/49 in low limits and 51/50 in the higher limits.

Insanobromismic

This is the comma that identifies 51/50 with 1 step of 35edo.

Subgroup: 2.3.5.7.11.13.17

Comma list: [36 -35 70 0 0 0 -35

Mapping: [35 0 0 0 0 0 36], 0 1 0 0 0 0 -1], 0 0 1 0 0 0 2], 0 0 0 1 0 0 0], 0 0 0 0 1 0 0], 0 0 0 0 0 1 0]]

mapping generators: ~51/50 = 1\35, ~3, ~5, ~7, ~11, ~13, ~17

Supporting ETs: 140, 525, 665, 2730, 3395, 3920, 7980, 11375, 15960, 16625, 24605, 28000, 32585, ...

Insanobromic

Subgroup: 2.3.5.17

Comma list: [36 -35 70 -35

Sval mapping[35 0 0 36], 0 1 0 -1], 0 0 1 2]]

mapping generators: ~51/50 = 1\35, ~3, ~5,

Supporting ETs: 140, 525, 665, 2730, 3395, 3920, 7980, 11375, 15960, 16625, 24605, 28000, 32585, ...

Bromine

Bromine is named after the 35th chemical element.

Subgroup: 2.3.5.7

Comma list: [47 -7 -7 -7, [6 -37 13 8

Mapping: [35 0 -418 653], 0 1 9 -10]]

Mapping generators: ~38263752/37515625 = 1\35, ~3

Optimal tuning (CTE): ~3/2 = 701.973

Supporting ETs: 665, 2065, 2730, 3395, 4060, 7455

11-limit

While 665edo still tunes bromine in the 11-limit, it is not recommended due to error on the 11th harmonic. 2730edo or 3395edo are better tunings. Alternately, considering bromine as a no-11s temperament keeps it within the realm of very high accuracy temperaments, having TE error of less than 0.005 cents per octave.

If a strong 11th harmonic is needed, 6125edo is the tuning for that.

Subgroup: 2.3.5.7.11

Comma list: 151263/151250, 115091701760/115063885233, 45137758519296/45135986328125

Mapping: [35 0 -418 653 2451], 0 1 9 -10 -42]]

Mapping generators: ~1203125/1179648 = 1\35, ~3

Optimal tuning (CTE): ~3/2 = 701.975

Optimal ET sequence665, 2730, 3395, 6125, 9520

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 123201/123200, 151263/151250, 1990656/1990625, 8683257856/8681088735

Mapping: [35 0 -418 653 2451 1239], 0 1 9 -10 -42 -20]]

Mapping generators: ~1485/1456 = 1\35, ~3

Optimal tuning (CTE): ~3/2 = 701.975

Supporting ETs: 665, 3395, ...

17-limit

The period is mapped to ~51/50.

Subgroup: 2.3.5.7.11.13.17

Comma list: 12376/12375, 123201/123200, 194481/194480, 1713660/1713481, 24635975/24634368

Mapping: [35 0 -418 653 2451 1239 -800], 0 1 9 -10 -42 -20 17]]

Mapping generators: ~51/50 = 1\35, ~3

Optimal tuning (CTE): ~3/2 = 701.97...

Supporting ETs: 665, 2730, 3395, 6125, 7455, 10185...

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 12376/12375, 12636/12635, 13377/13376, 14080/14079, 14365/14364, 486400/486387

Mapping: [35 0 -418 653 2451 1239 -800 152], 0 1 9 -10 -42 -20 17 -7]]

Mapping generators: ~51/50 = 1\35, ~3

Optimal tuning (CTE): ~3/2 = 701.97...

Supporting ETs: 665, 2730, 3395, 6125, 6790h, 7455eh...

Tritonopodismic (rank-3)

Tritonopodismic tempers out tritonopod comma, the comma which sets 7/5 to 17\35, "one leg", and 10/7 to 18\35, the "other leg". Also it sets 50/49 to be equal to 1\35.

Subgroup:2.3.5.7

Comma list: [17 0 35 -35

Mapping: [35 0 0 17], 0 1 0 0], 0 0 1 1]]

Mapping generators: ~50/49 = 1\35, ~3, ~5

Optimal tuning (CTE): ~3/2 = 701.955, ~5/4 = 386.174

Optimal ET sequence35, 70, 140, 210, 525, 665

Tritonopod (rank-2)

Subgroup:2.5.7

Comma list: [17 35 -35

Mapping: [35 0 17], 0 1 1]]

Mapping generators: ~50/49, ~5

Optimal tuning (CTE): ~5/4 = 386.174