16625edo
Jump to navigation
Jump to search
Prime factorization
53 × 7 × 19
Step size
0.0721805¢
Fifth
9725\16625 (701.955¢) (→389\665)
Semitones (A1:m2)
1575:1250 (113.7¢ : 90.23¢)
Consistency limit
29
Distinct consistency limit
29
← 16624edo | 16625edo | 16626edo → |
16625 equal divisions of the octave (16625edo), or 16625-tone equal temperament (16625tet), 16625 equal temperament (16625et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 16625 equal parts of about 0.0722 ¢ each.
16625edo is consistent in the 29-odd-limit. It tempers out the comma [802 -799 200⟩ which equates a stack of two hundred syntonic commas with 12/1, and supports the rank-2 temperament 6862 & 9763 tempering out this comma.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.0000 | -0.0001 | -0.0039 | -0.0199 | -0.0037 | +0.0137 | -0.0050 | +0.0148 | -0.0157 | +0.0048 | +0.0351 |
relative (%) | +0 | -0 | -5 | -28 | -5 | +19 | -7 | +21 | -22 | +7 | +49 | |
Steps (reduced) |
16625 (0) |
26350 (9725) |
38602 (5352) |
46672 (13422) |
57513 (7638) |
61520 (11645) |
67954 (1454) |
70622 (4122) |
75204 (8704) |
80764 (14264) |
82364 (15864) |
Subsets and supersets
16625edo has subset edos 5, 7, 19, 25, 35, 95, 125, 133, 175, 475, 665, 875, 2375, and 3325, of which 665 is a continued fraction approximant to the perfect fifth 3/2.