# 16625edo

Jump to navigation
Jump to search
Prime factorization
5
Step size
0.0721805¢
Fifth
9725\16625 (701.955¢) (→389\665)
Semitones (A1:m2)
1575:1250 (113.7¢ : 90.23¢)
Consistency limit
29
Distinct consistency limit
29

← 16624edo | 16625edo | 16626edo → |

^{3}× 7 × 19**16625 equal divisions of the octave** (**16625edo**), or **16625-tone equal temperament** (**16625tet**), **16625 equal temperament** (**16625et**) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 16625 equal parts of about 0.0722 ¢ each.

## Theory

Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | |
---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | +0.0000 | -0.0001 | -0.0039 | -0.0199 | -0.0037 | +0.0137 | -0.0050 | +0.0148 | -0.0157 | +0.0048 |

relative (%) | +0 | -0 | -5 | -28 | -5 | +19 | -7 | +21 | -22 | +7 | |

Steps (reduced) |
16625 (0) |
26350 (9725) |
38602 (5352) |
46672 (13422) |
57513 (7638) |
61520 (11645) |
67954 (1454) |
70622 (4122) |
75204 (8704) |
80764 (14264) |

16625edo is consistent in the 29-limit.

16625edo has 15 proper divisors: 1, 5, 7, 19, 25, 35, 95, 125, 133, 175, 475, 665, 875, 2375, 3325, of which 665 is a continued fraction approximant to the perfect fifth 3/2.

16625edo tempers out the comma [802 -799 200⟩ which equates 200 syntonic commas with 12/1, and supports rank 2 temperament 9763 & 16625 tempering out this comma.