Amity: Difference between revisions
m see-also format |
m Text replacement - "Eigenmonzo<br>(unchanged-interval)" to "Unchanged interval<br>(eigenmonzo)" |
||
(20 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
'''Amity''' is a [[regular temperament|temperament]] that divides a [[8/3|perfect eleventh]] into 5 [[generator]]s of acute minor thirds. A stack of 13 generators [[octave reduction|octave reduced]] represents [[8/5]], [[tempering out]] the [[amity comma]], 1600000/1594323. This article also assumes the canonical [[extension]] to the [[7-limit]], where a stack of 17 generators octave reduced represents [[7/4]], tempering out [[4375/4374]] and [[5120/5103]]. [[Equal temperaments]] that [[support]] amity include {{EDOs| 46, 53, 99, 152, and 205 }}. | |||
{{ | |||
Extending amity from the 7-limit to the 11-limit is not so simple. There are three mappings that are comparable in complexity and error: undecimal amity ({{nowrap| 53 & 152 }}), catamite ({{nowrap| 46 & 145 }}), and hitchcock ({{nowrap| 46 & 53 }}). Undecimal amity tempers out 540/539 and has the harmonic 11 mapped to −62 generator steps. Catamite tempers out 441/440 and has the harmonic 11 mapped to +37 generators steps. Hitchcock tempers out 121/120 and has the harmonic 11 mapped to −9 steps. They can be extended to the 13-limit through [[352/351]], and results in [[625/624]] and [[729/728]] being tempered out in 13-limit amity, [[196/195]] and [[364/363]] being tempered out in catamite, and [[169/168]] and [[325/324]] being tempered out in hitchcock. Hitchcock has an extra extension to the 17-limit where it tempers out [[154/153]], [[256/255]], and [[273/272]]. | |||
Amity was named by [[Gene Ward Smith]] in 2001–2002 as a restructuring of the phrase ''acute minor third''<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_2064.html Yahoo! Tuning Group | ''Kleismic & co'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3481.html Yahoo! Tuning Group | ''32 best 5-limit linear temperaments redux'']</ref>. | |||
{{Tdhat|Amity family #Amity}} | |||
== Interval chain == | == Interval chain == | ||
In the following table, odd harmonics 1–21 and their inversions are labeled in '''bold'''. | |||
{| class="wikitable center-1 right-2" | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
! rowspan=" | ! rowspan="3" | # | ||
! rowspan=" | ! rowspan="3" | Cents* | ||
! colspan="3" | Approximate | ! colspan="3" | Approximate ratios | ||
|- | |- | ||
! 7-limit | ! rowspan="2" | 7-limit | ||
! 13-limit | ! colspan="2" | 13-limit extensions | ||
! | |- | ||
! Amity ({{nowrap| 53 & 152 }}) | |||
! Hitchcock ({{nowrap| 46 & 53 }}) | |||
|- | |- | ||
| 0 | | 0 | ||
| 0.00 | | 0.00 | ||
| 1/1 | | '''1/1''' | ||
| | | | ||
| | | | ||
Line 32: | Line 35: | ||
|- | |- | ||
| 2 | | 2 | ||
| 678. | | 678.87 | ||
| 40/27 | | 40/27 | ||
| | | | ||
Line 44: | Line 47: | ||
|- | |- | ||
| 4 | | 4 | ||
| 157. | | 157.74 | ||
| 35/32 | | 35/32 | ||
| | | | ||
| 12/11, 11/10 | | 12/11, 11/10 | ||
|- | |- | ||
| 5 | |||
| 497. | | 497.17 | ||
| '''4/3''' | | '''4/3''' | ||
| | | | ||
Line 56: | Line 59: | ||
|- | |- | ||
| 6 | | 6 | ||
| 836. | | 836.61 | ||
| 81/50 | | 81/50 | ||
| | | | ||
Line 62: | Line 65: | ||
|- | |- | ||
| 7 | | 7 | ||
| 1176. | | 1176.04 | ||
| 63/32, 160/81 | | 63/32, 160/81 | ||
| 65/33, 77/39 | | 65/33, 77/39 | ||
Line 68: | Line 71: | ||
|- | |- | ||
| 8 | | 8 | ||
| 315. | | 315.48 | ||
| 6/5 | | 6/5 | ||
| | | | ||
Line 74: | Line 77: | ||
|- | |- | ||
| 9 | | 9 | ||
| 654. | | 654.91 | ||
| 35/24 | | 35/24 | ||
| | | | ||
Line 80: | Line 83: | ||
|- | |- | ||
| 10 | | 10 | ||
| 994. | | 994.35 | ||
| 16/9 | | '''16/9''' | ||
| | | | ||
| 39/22 | | 39/22 | ||
|- | |- | ||
| 11 | | 11 | ||
| 133. | | 133.78 | ||
| 27/25 | | 27/25 | ||
| | | | ||
Line 92: | Line 95: | ||
|- | |- | ||
| 12 | | 12 | ||
| 473. | | 473.22 | ||
| 21/16 | | '''21/16''' | ||
| | | | ||
| | | | ||
|- | |- | ||
| 13 | | 13 | ||
| 812. | | 812.65 | ||
| '''8/5''' | | '''8/5''' | ||
| | | | ||
Line 104: | Line 107: | ||
|- | |- | ||
| 14 | | 14 | ||
| 1152. | | 1152.09 | ||
| 35/18 | | 35/18 | ||
| | | | ||
Line 110: | Line 113: | ||
|- | |- | ||
| 15 | | 15 | ||
| 291. | | 291.52 | ||
| 32/27 | | 32/27 | ||
| 13/11 | | 13/11 | ||
Line 116: | Line 119: | ||
|- | |- | ||
| 16 | | 16 | ||
| 630. | | 630.96 | ||
| 36/25 | | 36/25 | ||
| | | | ||
Line 122: | Line 125: | ||
|- | |- | ||
| 17 | | 17 | ||
| 970. | | 970.39 | ||
| '''7/4''' | | '''7/4''' | ||
| | | | ||
Line 128: | Line 131: | ||
|- | |- | ||
| 18 | | 18 | ||
| 109. | | 109.83 | ||
| 16/15 | | '''16/15''' | ||
| | | | ||
| | | | ||
|- | |- | ||
| 19 | | 19 | ||
| 449. | | 449.26 | ||
| 35/27 | | 35/27 | ||
| | | | ||
Line 140: | Line 143: | ||
|- | |- | ||
| 20 | | 20 | ||
| 788. | | 788.70 | ||
| 63/40 | | 63/40 | ||
| | | | ||
Line 146: | Line 149: | ||
|- | |- | ||
| 21 | | 21 | ||
| 1128. | | 1128.13 | ||
| 48/25 | | 48/25 | ||
| 25/13 | | 25/13 | ||
Line 152: | Line 155: | ||
|- | |- | ||
| 22 | | 22 | ||
| 267. | | 267.57 | ||
| 7/6 | | 7/6 | ||
| | | | ||
Line 158: | Line 161: | ||
|- | |- | ||
| 23 | | 23 | ||
| | | 607.00 | ||
| 64/45 | | 64/45 | ||
| | | | ||
Line 164: | Line 167: | ||
|- | |- | ||
| 24 | | 24 | ||
| 946. | | 946.44 | ||
| 81/70 | | 81/70 | ||
| | | | ||
Line 170: | Line 173: | ||
|- | |- | ||
| 25 | | 25 | ||
| 85. | | 85.87 | ||
| 21/20 | | 21/20 | ||
| | | | ||
Line 176: | Line 179: | ||
|- | |- | ||
| 26 | | 26 | ||
| 425. | | 425.31 | ||
| 32/25 | | 32/25 | ||
| | | | ||
Line 182: | Line 185: | ||
|- | |- | ||
| 27 | | 27 | ||
| 764. | | 764.74 | ||
| 14/9 | | 14/9 | ||
| | | | ||
Line 188: | Line 191: | ||
|- | |- | ||
| 28 | | 28 | ||
| 1104. | | 1104.18 | ||
| 256/135 | | 256/135 | ||
| | | | ||
Line 194: | Line 197: | ||
|- | |- | ||
| 29 | | 29 | ||
| 243. | | 243.61 | ||
| 147/128 | | 147/128 | ||
| 15/13 | | 15/13 | ||
Line 200: | Line 203: | ||
|- | |- | ||
| 30 | | 30 | ||
| | | 583.05 | ||
| 7/5 | | 7/5 | ||
| | | | ||
Line 206: | Line 209: | ||
|- | |- | ||
| 31 | | 31 | ||
| 922. | | 922.48 | ||
| 128/75 | | 128/75 | ||
| | | | ||
Line 212: | Line 215: | ||
|- | |- | ||
| 32 | | 32 | ||
| 61. | | 61.92 | ||
| 28/27 | | 28/27 | ||
| 27/26 | | 27/26 | ||
Line 218: | Line 221: | ||
|- | |- | ||
| 33 | | 33 | ||
| 401. | | 401.35 | ||
| 63/50 | | 63/50 | ||
| | | | ||
Line 224: | Line 227: | ||
|- | |- | ||
| 34 | | 34 | ||
| 740. | | 740.79 | ||
| 49/32 | | 49/32 | ||
| 20/13 | | 20/13 | ||
Line 230: | Line 233: | ||
|- | |- | ||
| 35 | | 35 | ||
| 1080. | | 1080.22 | ||
| 28/15 | | 28/15 | ||
| | | | ||
Line 236: | Line 239: | ||
|- | |- | ||
| 36 | | 36 | ||
| 219. | | 219.66 | ||
| 256/225 | | 256/225 | ||
| 25/22 | | 25/22 | ||
Line 242: | Line 245: | ||
|- | |- | ||
| 37 | | 37 | ||
| | | 559.09 | ||
| 112/81 | | 112/81 | ||
| 18/13 | | 18/13 | ||
Line 248: | Line 251: | ||
|- | |- | ||
| 38 | | 38 | ||
| 898. | | 898.53 | ||
| 42/25 | | 42/25 | ||
| | | | ||
Line 254: | Line 257: | ||
|- | |- | ||
| 39 | | 39 | ||
| 37. | | 37.96 | ||
| 49/48 | | 49/48 | ||
| 40/39, 45/44 | | 40/39, 45/44 | ||
| | | | ||
|} | |} | ||
<nowiki>* | <nowiki/>* In 7-limit CWE tuning, octave reduced | ||
== Tunings == | |||
{| class="wikitable center-all left- | === Tunings spectra === | ||
==== Amity ==== | |||
{| class="wikitable center-all left-4" | |||
|- | |- | ||
! Eigenmonzo | ! Edo<br>generator | ||
! Generator | ! [[Eigenmonzo|Unchanged interval<br>(eigenmonzo)]]* | ||
! Generator (¢) | |||
! Comments | ! Comments | ||
|- | |- | ||
| | | 11\39 | ||
| | |||
| 338.462 | |||
| 39ee… val, lower bound of 7- and 9-odd-limit diamond monotone | |||
|- | |||
| 13\46 | |||
| | |||
| 339.130 | |||
| 46ef val | |||
|- | |||
| | |||
| 9/5 | |||
| 339.199 | | 339.199 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/11 | | 13/11 | ||
| 339.281 | | 339.281 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 7/4 | |||
| 339.343 | | 339.343 | ||
| | | | ||
|- | |- | ||
| 28\99 | |||
| | |||
| 339.394 | |||
| 99ef val, lower bound of 11-, 13-, 15-, and 13-limit 21-odd-limit diamond monotone | |||
|- | |||
| | |||
| 7/6 | | 7/6 | ||
| 339.403 | | 339.403 | ||
| | | | ||
|- | |- | ||
| | |||
| 7/5 | | 7/5 | ||
| 339.417 | | 339.417 | ||
| 7-odd-limit minimax | | 7-odd-limit minimax | ||
|- | |- | ||
| | |||
| 9/7 | | 9/7 | ||
| 339.441 | | 339.441 | ||
| 9-odd-limit minimax | | 9-odd-limit minimax | ||
|- | |- | ||
| | |||
| 15/14 | | 15/14 | ||
| 339.444 | | 339.444 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 5/3 | |||
| 339.455 | | 339.455 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 11/7 | |||
| 339.462 | | 339.462 | ||
| 11-odd-limit minimax | | 11-odd-limit minimax | ||
|- | |- | ||
| | |||
| 11/9 | | 11/9 | ||
| 339.473 | | 339.473 | ||
| | | | ||
|- | |- | ||
| 43\152 | |||
| | |||
| 339.474 | |||
| 152f val | |||
|- | |||
| | |||
| 15/11 | | 15/11 | ||
| 339.476 | | 339.476 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 11/6 | |||
| 339.485 | | 339.485 | ||
| | | | ||
|- | |- | ||
| | |||
| 11/10 | | 11/10 | ||
| 339.490 | | 339.490 | ||
| | | | ||
|- | |- | ||
| | |||
| 11/8 | | 11/8 | ||
| 339.495 | | 339.495 | ||
| 13- and | | 13- and 15-odd-limit minimax | ||
|- | |- | ||
| | | | ||
| 13/7 | |||
| 339.505 | | 339.505 | ||
| | | | ||
|- | |- | ||
| 58\205 | |||
| | |||
| 339.512 | |||
| | |||
|- | |||
| | |||
| 5/4 | | 5/4 | ||
| 339.514 | | 339.514 | ||
| 5-odd-limit minimax | | 5-odd-limit minimax | ||
|- | |- | ||
| | | | ||
| 15/8 | |||
| 339.541 | | 339.541 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 13/9 | |||
| 339.551 | | 339.551 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/12 | | 13/12 | ||
| 339.558 | | 339.558 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 13/8 | |||
| 339.563 | | 339.563 | ||
| | | | ||
|- | |- | ||
| | |||
| 15/13 | | 15/13 | ||
| 339.577 | | 339.577 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/10 | | 13/10 | ||
| 339.582 | | 339.582 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 3/2 | |||
| 339.609 | | 339.609 | ||
| | | | ||
|- | |||
| 15\53 | |||
| | |||
| 339.623 | |||
| Upper bound of 11-, 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |||
|- | |||
| 17\60 | |||
| | |||
| 340.000 | |||
| 60deee… val, upper bound of 7- and 9-odd-limit diamond monotone | |||
|} | |} | ||
=== | ==== Hitchcock ==== | ||
{| class="wikitable center-all left-4" | |||
{| class="wikitable center-all left- | |||
|- | |- | ||
! | ! Edo<br>generator | ||
! Generator | ! Unchanged interval<br>(eigenmonzo)* | ||
! | ! Generator (¢) | ||
! Comments | |||
|- | |- | ||
| | | | ||
| 11/6 | |||
| 337.659 | | 337.659 | ||
| | | | ||
|- | |- | ||
| 11\39 | |||
| | |||
| 338.462 | |||
| Lower bound of 7-, 9, and 11-odd-limit diamond monotone | |||
|- | |||
| | |||
| 11/8 | | 11/8 | ||
| 338.742 | | 338.742 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 13/7 | |||
| 338.936 | | 338.936 | ||
| | | | ||
|- | |- | ||
| | | 13\46 | ||
| | |||
| 339.130 | |||
| Lower bound of 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |||
|- | |||
| | |||
| 11/7 | |||
| 339.135 | | 339.135 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 9/5 | |||
| 339.199 | | 339.199 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/11 | | 13/11 | ||
| 339.281 | | 339.281 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 7/4 | |||
| 339.343 | | 339.343 | ||
| | | | ||
|- | |- | ||
| 28\99 | |||
| | |||
| 339.394 | |||
| | |||
|- | |||
| | |||
| 7/6 | | 7/6 | ||
| 339.403 | | 339.403 | ||
| | | | ||
|- | |- | ||
| | |||
| 7/5 | | 7/5 | ||
| 339.417 | | 339.417 | ||
| 7-odd-limit minimax | | 7-odd-limit minimax | ||
|- | |- | ||
| | |||
| 9/7 | | 9/7 | ||
| 339.441 | | 339.441 | ||
| 9-, 11-, and 13-odd-limit minimax | | 9-, 11-, and 13-odd-limit minimax | ||
|- | |- | ||
| | |||
| 15/14 | | 15/14 | ||
| 339.444 | | 339.444 | ||
| 15-odd-limit minimax | | 15-odd-limit minimax | ||
|- | |- | ||
| | | | ||
| 5/3 | |||
| 339.455 | | 339.455 | ||
| | | | ||
|- | |- | ||
| | |||
| 5/4 | | 5/4 | ||
| 339.514 | | 339.514 | ||
| 5-odd-limit minimax | | 5-odd-limit minimax | ||
|- | |- | ||
| | | | ||
| 15/8 | |||
| 339.541 | | 339.541 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 3/2 | |||
| 339.609 | | 339.609 | ||
| | | | ||
|- | |- | ||
| 15\53 | |||
| | |||
| 339.623 | |||
| Upper bound of 11-, 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |||
|- | |||
| | |||
| 15/13 | | 15/13 | ||
| 339.677 | | 339.677 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/10 | | 13/10 | ||
| 339.695 | | 339.695 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 13/9 | |||
| 339.789 | | 339.789 | ||
| | | | ||
|- | |- | ||
| | |||
| 13/12 | | 13/12 | ||
| 339.870 | | 339.870 | ||
| | | | ||
|- | |- | ||
| | | 17\60 | ||
| | |||
| 340.000 | |||
| 60de val, upper bound of 7- and 9-odd-limit diamond monotone | |||
|- | |||
| | |||
| 13/8 | |||
| 340.088 | | 340.088 | ||
| | | | ||
|- | |- | ||
| | |||
| 15/11 | | 15/11 | ||
| 340.339 | | 340.339 | ||
| | | | ||
|- | |- | ||
| | |||
| 11/10 | | 11/10 | ||
| 341.251 | | 341.251 | ||
| | | | ||
|- | |- | ||
| | |||
| 11/9 | | 11/9 | ||
| 347.408 | | 347.408 | ||
| | | | ||
|} | |} | ||
<nowiki/>* Besides the octave | |||
== | == Music == | ||
; [[User:Francium|Francium]] | |||
* [ | * [https://www.youtube.com/watch?v=AsDaJXCBd_w ''For Amity''] (2023) – in 463edo tuning | ||
== Notes == | |||
[[Category:Amity| ]] <!-- main article --> | |||
[[Category:Rank-2 temperaments]] | |||
[[Category:Amity family]] | [[Category:Amity family]] | ||
[[Category:Ragismic microtemperaments]] | [[Category:Ragismic microtemperaments]] | ||
[[Category: | [[Category:Hemifamity temperaments]] | ||
Latest revision as of 06:56, 21 June 2025
Amity is a temperament that divides a perfect eleventh into 5 generators of acute minor thirds. A stack of 13 generators octave reduced represents 8/5, tempering out the amity comma, 1600000/1594323. This article also assumes the canonical extension to the 7-limit, where a stack of 17 generators octave reduced represents 7/4, tempering out 4375/4374 and 5120/5103. Equal temperaments that support amity include 46, 53, 99, 152, and 205.
Extending amity from the 7-limit to the 11-limit is not so simple. There are three mappings that are comparable in complexity and error: undecimal amity (53 & 152), catamite (46 & 145), and hitchcock (46 & 53). Undecimal amity tempers out 540/539 and has the harmonic 11 mapped to −62 generator steps. Catamite tempers out 441/440 and has the harmonic 11 mapped to +37 generators steps. Hitchcock tempers out 121/120 and has the harmonic 11 mapped to −9 steps. They can be extended to the 13-limit through 352/351, and results in 625/624 and 729/728 being tempered out in 13-limit amity, 196/195 and 364/363 being tempered out in catamite, and 169/168 and 325/324 being tempered out in hitchcock. Hitchcock has an extra extension to the 17-limit where it tempers out 154/153, 256/255, and 273/272.
Amity was named by Gene Ward Smith in 2001–2002 as a restructuring of the phrase acute minor third[1][2].
For technical data, see Amity family #Amity.
Interval chain
In the following table, odd harmonics 1–21 and their inversions are labeled in bold.
# | Cents* | Approximate ratios | ||
---|---|---|---|---|
7-limit | 13-limit extensions | |||
Amity (53 & 152) | Hitchcock (46 & 53) | |||
0 | 0.00 | 1/1 | ||
1 | 339.43 | 128/105 | 11/9 | |
2 | 678.87 | 40/27 | ||
3 | 1018.30 | 9/5 | ||
4 | 157.74 | 35/32 | 12/11, 11/10 | |
5 | 497.17 | 4/3 | ||
6 | 836.61 | 81/50 | 13/8, 21/13 | |
7 | 1176.04 | 63/32, 160/81 | 65/33, 77/39 | 65/33, 77/39, 128/65 |
8 | 315.48 | 6/5 | ||
9 | 654.91 | 35/24 | 16/11, 22/15 | |
10 | 994.35 | 16/9 | 39/22 | |
11 | 133.78 | 27/25 | 13/12, 14/13 | |
12 | 473.22 | 21/16 | ||
13 | 812.65 | 8/5 | ||
14 | 1152.09 | 35/18 | 39/20, 64/33, 88/45 | |
15 | 291.52 | 32/27 | 13/11 | 13/11 |
16 | 630.96 | 36/25 | 13/9 | |
17 | 970.39 | 7/4 | ||
18 | 109.83 | 16/15 | ||
19 | 449.26 | 35/27 | 13/10 | |
20 | 788.70 | 63/40 | 52/33 | |
21 | 1128.13 | 48/25 | 25/13 | 21/11, 52/27 |
22 | 267.57 | 7/6 | ||
23 | 607.00 | 64/45 | ||
24 | 946.44 | 81/70 | 26/15 | |
25 | 85.87 | 21/20 | ||
26 | 425.31 | 32/25 | 14/11 | |
27 | 764.74 | 14/9 | ||
28 | 1104.18 | 256/135 | ||
29 | 243.61 | 147/128 | 15/13 | |
30 | 583.05 | 7/5 | ||
31 | 922.48 | 128/75 | 56/33 | |
32 | 61.92 | 28/27 | 27/26 | |
33 | 401.35 | 63/50 | ||
34 | 740.79 | 49/32 | 20/13 | |
35 | 1080.22 | 28/15 | ||
36 | 219.66 | 256/225 | 25/22 | |
37 | 559.09 | 112/81 | 18/13 | |
38 | 898.53 | 42/25 | ||
39 | 37.96 | 49/48 | 40/39, 45/44 |
* In 7-limit CWE tuning, octave reduced
Tunings
Tunings spectra
Amity
Edo generator |
Unchanged interval (eigenmonzo)* |
Generator (¢) | Comments |
---|---|---|---|
11\39 | 338.462 | 39ee… val, lower bound of 7- and 9-odd-limit diamond monotone | |
13\46 | 339.130 | 46ef val | |
9/5 | 339.199 | ||
13/11 | 339.281 | ||
7/4 | 339.343 | ||
28\99 | 339.394 | 99ef val, lower bound of 11-, 13-, 15-, and 13-limit 21-odd-limit diamond monotone | |
7/6 | 339.403 | ||
7/5 | 339.417 | 7-odd-limit minimax | |
9/7 | 339.441 | 9-odd-limit minimax | |
15/14 | 339.444 | ||
5/3 | 339.455 | ||
11/7 | 339.462 | 11-odd-limit minimax | |
11/9 | 339.473 | ||
43\152 | 339.474 | 152f val | |
15/11 | 339.476 | ||
11/6 | 339.485 | ||
11/10 | 339.490 | ||
11/8 | 339.495 | 13- and 15-odd-limit minimax | |
13/7 | 339.505 | ||
58\205 | 339.512 | ||
5/4 | 339.514 | 5-odd-limit minimax | |
15/8 | 339.541 | ||
13/9 | 339.551 | ||
13/12 | 339.558 | ||
13/8 | 339.563 | ||
15/13 | 339.577 | ||
13/10 | 339.582 | ||
3/2 | 339.609 | ||
15\53 | 339.623 | Upper bound of 11-, 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |
17\60 | 340.000 | 60deee… val, upper bound of 7- and 9-odd-limit diamond monotone |
Hitchcock
Edo generator |
Unchanged interval (eigenmonzo)* |
Generator (¢) | Comments |
---|---|---|---|
11/6 | 337.659 | ||
11\39 | 338.462 | Lower bound of 7-, 9, and 11-odd-limit diamond monotone | |
11/8 | 338.742 | ||
13/7 | 338.936 | ||
13\46 | 339.130 | Lower bound of 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |
11/7 | 339.135 | ||
9/5 | 339.199 | ||
13/11 | 339.281 | ||
7/4 | 339.343 | ||
28\99 | 339.394 | ||
7/6 | 339.403 | ||
7/5 | 339.417 | 7-odd-limit minimax | |
9/7 | 339.441 | 9-, 11-, and 13-odd-limit minimax | |
15/14 | 339.444 | 15-odd-limit minimax | |
5/3 | 339.455 | ||
5/4 | 339.514 | 5-odd-limit minimax | |
15/8 | 339.541 | ||
3/2 | 339.609 | ||
15\53 | 339.623 | Upper bound of 11-, 13-, 15-odd-limit and 13-limit 21-odd-limit diamond monotone | |
15/13 | 339.677 | ||
13/10 | 339.695 | ||
13/9 | 339.789 | ||
13/12 | 339.870 | ||
17\60 | 340.000 | 60de val, upper bound of 7- and 9-odd-limit diamond monotone | |
13/8 | 340.088 | ||
15/11 | 340.339 | ||
11/10 | 341.251 | ||
11/9 | 347.408 |
* Besides the octave
Music
- For Amity (2023) – in 463edo tuning