53ed7: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tags: Mobile edit Mobile web edit |
→Theory: note consistency and +subsets and supersets |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
{| class="wikitable" | == Theory == | ||
53ed7 is related to [[19edo]], [[30edt]], and [[Carlos Beta]], but with the 7/1 rather than the [[2/1]] being just. The octave is about 7.6923 cents stretched. Like 19edo, 53ed7 is [[consistent]] to the [[integer limit|10-integer-limit]], but the [[patent val]] has a generally sharp tendency for [[harmonic]]s up to 16, with exception for [[11/1|11th harmonic]]. | |||
=== Harmonics === | |||
{{Harmonics in equal|53|7|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|53|7|1|intervals=integer|columns=11|start=12|collapsed=1|title=Approximation of harmonics in 53ed7 (continued)}} | |||
=== Subsets and supersets === | |||
53ed7 is the 16th [[prime equal division|prime ed7]]. It does not contain any nontrivial subset ed7's. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | [[1/1]] | ||
|- | |- | ||
| 1 | |||
| 63.6 | |||
| | | [[21/20]], [[25/24]], [[27/26]], [[28/27]] | ||
|- | |- | ||
| 2 | |||
| 127.1 | |||
| | | [[13/12]], [[14/13]], [[15/14]], [[16/15]] | ||
|- | |- | ||
| 3 | |||
| 190.7 | |||
| | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 4 | |||
| 254.3 | |||
| | | [[7/6]], [[8/7]] | ||
|- | |- | ||
| 5 | |||
| 317.8 | |||
| [[6/5]] | |||
|- | |- | ||
| 6 | |||
| 381.4 | |||
| | | [[5/4]] | ||
|- | |- | ||
| 7 | |||
| 444.9 | |||
| [[9/7]] | |||
|- | |- | ||
| 8 | |||
| 508.5 | |||
| [[4/3]] | |||
| | |||
|- | |- | ||
| 9 | |||
| 572.1 | |||
| | | [[7/5]], [[18/13]] | ||
|- | |- | ||
| 10 | |||
| 635.6 | |||
| | | [[10/7]], [[13/9]] | ||
|- | |- | ||
| 11 | |||
| 699.2 | |||
| [[3/2]] | |||
|- | |- | ||
| 12 | |||
| 762.8 | |||
| [[14/9]] | |||
|- | |- | ||
| 13 | |||
| 826.3 | |||
| | | [[8/5]], [[13/8]] | ||
|- | |- | ||
| 14 | |||
| 889.9 | |||
| | | [[5/3]] | ||
|- | |- | ||
| 15 | |||
| 953.4 | |||
| | | [[7/4]], [[12/7]] | ||
|- | |- | ||
| 16 | |||
| 1017.0 | |||
| [[9/5]] | |||
|- | |- | ||
| 17 | |||
| 1080.6 | |||
| [[15/8]] | |||
|- | |- | ||
| 18 | |||
| 1144.1 | |||
| | | [[27/14]], [[35/18]] | ||
|- | |- | ||
| 19 | |||
| 1207.7 | |||
| [[2/1]] | |||
| | |||
|- | |- | ||
| 20 | |||
| 1271.3 | |||
| [[21/10]], [[25/12]] | |||
|- | |- | ||
| 21 | |||
| 1334.8 | |||
| [[13/6]] | |||
|- | |- | ||
| 22 | |||
| 1398.4 | |||
| | | [[9/4]] | ||
|- | |- | ||
| 23 | |||
| 1461.9 | |||
| [[7/3]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 1525.5 | |||
| [[12/5]] | |||
| | |||
|- | |- | ||
| 25 | |||
| 1589.1 | |||
| [[5/2]] | |||
|- | |- | ||
| 26 | |||
| 1652.6 | |||
| [[13/5]] | |||
|- | |- | ||
| 27 | |||
| 1716.2 | |||
| | | [[8/3]] | ||
|- | |- | ||
| 28 | |||
| 1779.8 | |||
| [[14/5]] | |||
|- | |- | ||
| 29 | |||
| 1843.3 | |||
| [[20/7]], [[26/9]] | |||
| | |||
|- | |- | ||
| 30 | |||
| 1906.9 | |||
| [[3/1]] | |||
| | |||
|- | |- | ||
| 31 | |||
| 1970.4 | |||
| [[25/8]], [[28/9]] | |||
|- | |- | ||
| 32 | |||
| 2034.0 | |||
| | | [[13/4]] | ||
|- | |- | ||
| 33 | |||
| 2097.6 | |||
| [[10/3]] | |||
|- | |- | ||
| 34 | |||
| 2161.1 | |||
| | | [[7/2]] | ||
|- | |- | ||
| 35 | |||
| 2224.7 | |||
| | | [[18/5]] | ||
|- | |- | ||
| 36 | |||
| 2288.3 | |||
| [[15/4]] | |||
|- | |- | ||
| 37 | |||
| 2351.8 | |||
| | | [[35/9]] | ||
|- | |- | ||
| 38 | |||
| 2415.4 | |||
| [[4/1]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 2478.9 | |||
| | | [[21/5]], [[25/6]] | ||
|- | |- | ||
| 40 | |||
| 2542.5 | |||
| | | [[13/3]] | ||
|- | |- | ||
| 41 | |||
| 2606.1 | |||
| [[9/2]] | |||
|- | |- | ||
| 42 | |||
| 2669.6 | |||
| [[14/3]] | |||
|- | |- | ||
| 43 | |||
| 2733.2 | |||
| | | [[24/5]] | ||
|- | |- | ||
| 44 | |||
| 2796.8 | |||
| [[5/1]] | |||
| | |||
|- | |- | ||
| 45 | |||
| 2860.3 | |||
| [[21/4]], [[26/5]] | |||
| | |||
|- | |- | ||
| 46 | |||
| 2923.9 | |||
| | | [[16/3]] | ||
|- | |- | ||
| 47 | |||
| 2987.4 | |||
| [[28/5]] | |||
| | |||
|- | |- | ||
| 48 | |||
| 3051.0 | |||
| | | [[35/6]] | ||
|- | |- | ||
| 49 | |||
| 3114.6 | |||
| [[6/1]] | |||
| | |||
|- | |- | ||
| 50 | |||
| 3178.1 | |||
| | | [[50/8]], [[56/9]] | ||
|- | |- | ||
| 51 | |||
| 3241.7 | |||
| [[13/2]] | |||
|- | |- | ||
| 52 | |||
| 3305.3 | |||
| [[27/4]] | |||
|- | |- | ||
| 53 | |||
| 3368.8 | |||
| | | [[7/1]] | ||
|} | |} | ||
[[ | == See also == | ||
[[ | * [[11edf]] – relative edf | ||
* [[19edo]] – relative edo | |||
* [[30edt]] – relative edt | |||
* [[49ed6]] – relative ed6 | |||
* [[68ed12]] – relative ed12 | |||
* [[93ed30]] – relative ed30 |
Latest revision as of 16:24, 30 March 2025
← 52ed7 | 53ed7 | 54ed7 → |
53 equal divisions of the 7th harmonic (abbreviated 53ed7) is a nonoctave tuning system that divides the interval of 7/1 into 53 equal parts of about 63.6 ¢ each. Each step represents a frequency ratio of 71/53, or the 53rd root of 7.
Theory
53ed7 is related to 19edo, 30edt, and Carlos Beta, but with the 7/1 rather than the 2/1 being just. The octave is about 7.6923 cents stretched. Like 19edo, 53ed7 is consistent to the 10-integer-limit, but the patent val has a generally sharp tendency for harmonics up to 16, with exception for 11th harmonic.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.7 | +4.9 | +15.4 | +10.4 | +12.6 | +0.0 | +23.1 | +9.9 | +18.1 | -19.7 | +20.3 |
Relative (%) | +12.1 | +7.8 | +24.2 | +16.4 | +19.9 | +0.0 | +36.3 | +15.5 | +28.5 | -31.1 | +32.0 | |
Steps (reduced) |
19 (19) |
30 (30) |
38 (38) |
44 (44) |
49 (49) |
53 (0) |
57 (4) |
60 (7) |
63 (10) |
65 (12) |
68 (15) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.9 | +7.7 | +15.4 | +30.8 | -10.6 | +17.5 | -12.5 | +25.8 | +4.9 | -12.0 | -25.4 |
Relative (%) | +13.9 | +12.1 | +24.2 | +48.4 | -16.7 | +27.6 | -19.7 | +40.6 | +7.8 | -19.0 | -40.0 | |
Steps (reduced) |
70 (17) |
72 (19) |
74 (21) |
76 (23) |
77 (24) |
79 (26) |
80 (27) |
82 (29) |
83 (30) |
84 (31) |
85 (32) |
Subsets and supersets
53ed7 is the 16th prime ed7. It does not contain any nontrivial subset ed7's.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 63.6 | 21/20, 25/24, 27/26, 28/27 |
2 | 127.1 | 13/12, 14/13, 15/14, 16/15 |
3 | 190.7 | 9/8, 10/9 |
4 | 254.3 | 7/6, 8/7 |
5 | 317.8 | 6/5 |
6 | 381.4 | 5/4 |
7 | 444.9 | 9/7 |
8 | 508.5 | 4/3 |
9 | 572.1 | 7/5, 18/13 |
10 | 635.6 | 10/7, 13/9 |
11 | 699.2 | 3/2 |
12 | 762.8 | 14/9 |
13 | 826.3 | 8/5, 13/8 |
14 | 889.9 | 5/3 |
15 | 953.4 | 7/4, 12/7 |
16 | 1017.0 | 9/5 |
17 | 1080.6 | 15/8 |
18 | 1144.1 | 27/14, 35/18 |
19 | 1207.7 | 2/1 |
20 | 1271.3 | 21/10, 25/12 |
21 | 1334.8 | 13/6 |
22 | 1398.4 | 9/4 |
23 | 1461.9 | 7/3 |
24 | 1525.5 | 12/5 |
25 | 1589.1 | 5/2 |
26 | 1652.6 | 13/5 |
27 | 1716.2 | 8/3 |
28 | 1779.8 | 14/5 |
29 | 1843.3 | 20/7, 26/9 |
30 | 1906.9 | 3/1 |
31 | 1970.4 | 25/8, 28/9 |
32 | 2034.0 | 13/4 |
33 | 2097.6 | 10/3 |
34 | 2161.1 | 7/2 |
35 | 2224.7 | 18/5 |
36 | 2288.3 | 15/4 |
37 | 2351.8 | 35/9 |
38 | 2415.4 | 4/1 |
39 | 2478.9 | 21/5, 25/6 |
40 | 2542.5 | 13/3 |
41 | 2606.1 | 9/2 |
42 | 2669.6 | 14/3 |
43 | 2733.2 | 24/5 |
44 | 2796.8 | 5/1 |
45 | 2860.3 | 21/4, 26/5 |
46 | 2923.9 | 16/3 |
47 | 2987.4 | 28/5 |
48 | 3051.0 | 35/6 |
49 | 3114.6 | 6/1 |
50 | 3178.1 | 50/8, 56/9 |
51 | 3241.7 | 13/2 |
52 | 3305.3 | 27/4 |
53 | 3368.8 | 7/1 |