53ed7: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Division of the 7th harmonic into 53 equal parts''' (53ed7) is related to 19edo and 30edt, but with the 7/1 rather than the 2/1 being just. The octave is ab..." Tags: Mobile edit Mobile web edit |
→Theory: note consistency and +subsets and supersets |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
[[ | == Theory == | ||
[[ | 53ed7 is related to [[19edo]], [[30edt]], and [[Carlos Beta]], but with the 7/1 rather than the [[2/1]] being just. The octave is about 7.6923 cents stretched. Like 19edo, 53ed7 is [[consistent]] to the [[integer limit|10-integer-limit]], but the [[patent val]] has a generally sharp tendency for [[harmonic]]s up to 16, with exception for [[11/1|11th harmonic]]. | ||
=== Harmonics === | |||
{{Harmonics in equal|53|7|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|53|7|1|intervals=integer|columns=11|start=12|collapsed=1|title=Approximation of harmonics in 53ed7 (continued)}} | |||
=== Subsets and supersets === | |||
53ed7 is the 16th [[prime equal division|prime ed7]]. It does not contain any nontrivial subset ed7's. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |||
! # | |||
! Cents | |||
! Approximate ratios | |||
|- | |||
| 0 | |||
| 0.0 | |||
| [[1/1]] | |||
|- | |||
| 1 | |||
| 63.6 | |||
| [[21/20]], [[25/24]], [[27/26]], [[28/27]] | |||
|- | |||
| 2 | |||
| 127.1 | |||
| [[13/12]], [[14/13]], [[15/14]], [[16/15]] | |||
|- | |||
| 3 | |||
| 190.7 | |||
| [[9/8]], [[10/9]] | |||
|- | |||
| 4 | |||
| 254.3 | |||
| [[7/6]], [[8/7]] | |||
|- | |||
| 5 | |||
| 317.8 | |||
| [[6/5]] | |||
|- | |||
| 6 | |||
| 381.4 | |||
| [[5/4]] | |||
|- | |||
| 7 | |||
| 444.9 | |||
| [[9/7]] | |||
|- | |||
| 8 | |||
| 508.5 | |||
| [[4/3]] | |||
|- | |||
| 9 | |||
| 572.1 | |||
| [[7/5]], [[18/13]] | |||
|- | |||
| 10 | |||
| 635.6 | |||
| [[10/7]], [[13/9]] | |||
|- | |||
| 11 | |||
| 699.2 | |||
| [[3/2]] | |||
|- | |||
| 12 | |||
| 762.8 | |||
| [[14/9]] | |||
|- | |||
| 13 | |||
| 826.3 | |||
| [[8/5]], [[13/8]] | |||
|- | |||
| 14 | |||
| 889.9 | |||
| [[5/3]] | |||
|- | |||
| 15 | |||
| 953.4 | |||
| [[7/4]], [[12/7]] | |||
|- | |||
| 16 | |||
| 1017.0 | |||
| [[9/5]] | |||
|- | |||
| 17 | |||
| 1080.6 | |||
| [[15/8]] | |||
|- | |||
| 18 | |||
| 1144.1 | |||
| [[27/14]], [[35/18]] | |||
|- | |||
| 19 | |||
| 1207.7 | |||
| [[2/1]] | |||
|- | |||
| 20 | |||
| 1271.3 | |||
| [[21/10]], [[25/12]] | |||
|- | |||
| 21 | |||
| 1334.8 | |||
| [[13/6]] | |||
|- | |||
| 22 | |||
| 1398.4 | |||
| [[9/4]] | |||
|- | |||
| 23 | |||
| 1461.9 | |||
| [[7/3]] | |||
|- | |||
| 24 | |||
| 1525.5 | |||
| [[12/5]] | |||
|- | |||
| 25 | |||
| 1589.1 | |||
| [[5/2]] | |||
|- | |||
| 26 | |||
| 1652.6 | |||
| [[13/5]] | |||
|- | |||
| 27 | |||
| 1716.2 | |||
| [[8/3]] | |||
|- | |||
| 28 | |||
| 1779.8 | |||
| [[14/5]] | |||
|- | |||
| 29 | |||
| 1843.3 | |||
| [[20/7]], [[26/9]] | |||
|- | |||
| 30 | |||
| 1906.9 | |||
| [[3/1]] | |||
|- | |||
| 31 | |||
| 1970.4 | |||
| [[25/8]], [[28/9]] | |||
|- | |||
| 32 | |||
| 2034.0 | |||
| [[13/4]] | |||
|- | |||
| 33 | |||
| 2097.6 | |||
| [[10/3]] | |||
|- | |||
| 34 | |||
| 2161.1 | |||
| [[7/2]] | |||
|- | |||
| 35 | |||
| 2224.7 | |||
| [[18/5]] | |||
|- | |||
| 36 | |||
| 2288.3 | |||
| [[15/4]] | |||
|- | |||
| 37 | |||
| 2351.8 | |||
| [[35/9]] | |||
|- | |||
| 38 | |||
| 2415.4 | |||
| [[4/1]] | |||
|- | |||
| 39 | |||
| 2478.9 | |||
| [[21/5]], [[25/6]] | |||
|- | |||
| 40 | |||
| 2542.5 | |||
| [[13/3]] | |||
|- | |||
| 41 | |||
| 2606.1 | |||
| [[9/2]] | |||
|- | |||
| 42 | |||
| 2669.6 | |||
| [[14/3]] | |||
|- | |||
| 43 | |||
| 2733.2 | |||
| [[24/5]] | |||
|- | |||
| 44 | |||
| 2796.8 | |||
| [[5/1]] | |||
|- | |||
| 45 | |||
| 2860.3 | |||
| [[21/4]], [[26/5]] | |||
|- | |||
| 46 | |||
| 2923.9 | |||
| [[16/3]] | |||
|- | |||
| 47 | |||
| 2987.4 | |||
| [[28/5]] | |||
|- | |||
| 48 | |||
| 3051.0 | |||
| [[35/6]] | |||
|- | |||
| 49 | |||
| 3114.6 | |||
| [[6/1]] | |||
|- | |||
| 50 | |||
| 3178.1 | |||
| [[50/8]], [[56/9]] | |||
|- | |||
| 51 | |||
| 3241.7 | |||
| [[13/2]] | |||
|- | |||
| 52 | |||
| 3305.3 | |||
| [[27/4]] | |||
|- | |||
| 53 | |||
| 3368.8 | |||
| [[7/1]] | |||
|} | |||
== See also == | |||
* [[11edf]] – relative edf | |||
* [[19edo]] – relative edo | |||
* [[30edt]] – relative edt | |||
* [[49ed6]] – relative ed6 | |||
* [[68ed12]] – relative ed12 | |||
* [[93ed30]] – relative ed30 |
Latest revision as of 16:24, 30 March 2025
← 52ed7 | 53ed7 | 54ed7 → |
53 equal divisions of the 7th harmonic (abbreviated 53ed7) is a nonoctave tuning system that divides the interval of 7/1 into 53 equal parts of about 63.6 ¢ each. Each step represents a frequency ratio of 71/53, or the 53rd root of 7.
Theory
53ed7 is related to 19edo, 30edt, and Carlos Beta, but with the 7/1 rather than the 2/1 being just. The octave is about 7.6923 cents stretched. Like 19edo, 53ed7 is consistent to the 10-integer-limit, but the patent val has a generally sharp tendency for harmonics up to 16, with exception for 11th harmonic.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.7 | +4.9 | +15.4 | +10.4 | +12.6 | +0.0 | +23.1 | +9.9 | +18.1 | -19.7 | +20.3 |
Relative (%) | +12.1 | +7.8 | +24.2 | +16.4 | +19.9 | +0.0 | +36.3 | +15.5 | +28.5 | -31.1 | +32.0 | |
Steps (reduced) |
19 (19) |
30 (30) |
38 (38) |
44 (44) |
49 (49) |
53 (0) |
57 (4) |
60 (7) |
63 (10) |
65 (12) |
68 (15) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.9 | +7.7 | +15.4 | +30.8 | -10.6 | +17.5 | -12.5 | +25.8 | +4.9 | -12.0 | -25.4 |
Relative (%) | +13.9 | +12.1 | +24.2 | +48.4 | -16.7 | +27.6 | -19.7 | +40.6 | +7.8 | -19.0 | -40.0 | |
Steps (reduced) |
70 (17) |
72 (19) |
74 (21) |
76 (23) |
77 (24) |
79 (26) |
80 (27) |
82 (29) |
83 (30) |
84 (31) |
85 (32) |
Subsets and supersets
53ed7 is the 16th prime ed7. It does not contain any nontrivial subset ed7's.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 63.6 | 21/20, 25/24, 27/26, 28/27 |
2 | 127.1 | 13/12, 14/13, 15/14, 16/15 |
3 | 190.7 | 9/8, 10/9 |
4 | 254.3 | 7/6, 8/7 |
5 | 317.8 | 6/5 |
6 | 381.4 | 5/4 |
7 | 444.9 | 9/7 |
8 | 508.5 | 4/3 |
9 | 572.1 | 7/5, 18/13 |
10 | 635.6 | 10/7, 13/9 |
11 | 699.2 | 3/2 |
12 | 762.8 | 14/9 |
13 | 826.3 | 8/5, 13/8 |
14 | 889.9 | 5/3 |
15 | 953.4 | 7/4, 12/7 |
16 | 1017.0 | 9/5 |
17 | 1080.6 | 15/8 |
18 | 1144.1 | 27/14, 35/18 |
19 | 1207.7 | 2/1 |
20 | 1271.3 | 21/10, 25/12 |
21 | 1334.8 | 13/6 |
22 | 1398.4 | 9/4 |
23 | 1461.9 | 7/3 |
24 | 1525.5 | 12/5 |
25 | 1589.1 | 5/2 |
26 | 1652.6 | 13/5 |
27 | 1716.2 | 8/3 |
28 | 1779.8 | 14/5 |
29 | 1843.3 | 20/7, 26/9 |
30 | 1906.9 | 3/1 |
31 | 1970.4 | 25/8, 28/9 |
32 | 2034.0 | 13/4 |
33 | 2097.6 | 10/3 |
34 | 2161.1 | 7/2 |
35 | 2224.7 | 18/5 |
36 | 2288.3 | 15/4 |
37 | 2351.8 | 35/9 |
38 | 2415.4 | 4/1 |
39 | 2478.9 | 21/5, 25/6 |
40 | 2542.5 | 13/3 |
41 | 2606.1 | 9/2 |
42 | 2669.6 | 14/3 |
43 | 2733.2 | 24/5 |
44 | 2796.8 | 5/1 |
45 | 2860.3 | 21/4, 26/5 |
46 | 2923.9 | 16/3 |
47 | 2987.4 | 28/5 |
48 | 3051.0 | 35/6 |
49 | 3114.6 | 6/1 |
50 | 3178.1 | 50/8, 56/9 |
51 | 3241.7 | 13/2 |
52 | 3305.3 | 27/4 |
53 | 3368.8 | 7/1 |