57edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
mNo edit summary
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(20 intermediate revisions by 11 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''57edo''' divides the [[Octave|octave]] into 57 parts of size 21.053¢. It can be used to tune [[Mothra_temperament|mothra temperament]], and is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just_intonation_subgroup|just intonation subgroup]]. One way to describe 57 is that it has a [[5-limit|5-limit]] part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11/8]], which is 26\57. This gives the [[19-limit|19-limit]] 46&57 temperament [[Sensipent_family|Heinz]].
{{ED intro}}


[[5-limit|5-limit]] [[comma]]s: [[81/80]], [[3125/3072]]
== Theory ==
57edo is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just intonation subgroup]]. One way to describe 57edo is that it has a [[5-limit]] part consisting of three [[ring number|ring]]s of 19edo, plus a no-threes no-fives part which is much more accurate.


[[7-limit|7-limit]] commas: 81/80, 3125/3072, [[1029/1024]]
Using the full prime-limit [[patent val]], the equal temperament tempers out [[81/80]], [[1029/1024]], and [[3125/3072]] in the 7-limit; and [[99/98]], [[385/384]], [[441/440]], and [[625/616]] in the [[11-limit]]. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11/8]], which is 26\57. This gives the [[19-limit]] 46 & 57 temperament [[heinz]]. It can also be used to tune [[mothra]] as well as [[trismegistus]].


[[11-limit|11-limit]] commas: [[99/98]], [[385/384]], [[441/440]], [[625/616]]
=== Odd harmonics ===
{{Harmonics in equal|57}}


==Just approximation==
=== Subsets and supersets ===
57edo contains [[3edo]] and [[19edo]] as subsets.


{{Primes in edo|57}}
== Intervals ==
 
{| class="wikitable center-1 right-2 center-3 center-4"
==Intervals==
 
{| class="wikitable"
|-
|-
! [[Degree|Degree]]
! #
![[cent|Cents]]
! [[Cent]]s
! [[Ups and downs notation|Ups and downs notation]]<br>(Flat Fifth 11\19)
! [[Ups and downs notation|Ups and downs notation]]<br>(Sharp Fifth 34\57)
|-
|-
| style="text-align:center;" | 0
| 0
| style="text-align:right;" | 0.0000
| 0.00
| {{UDnote|step=0}}
| {{UDnote|fifth=34|step=0}}
|-
|-
| style="text-align:center;" | 1
| 1
| style="text-align:right;" | 21.0526
| 21.05
| {{UDnote|step=1}}
| {{UDnote|fifth=34|step=1}}
|-
|-
| style="text-align:center;" | 2
| 2
| style="text-align:right;" | 42.1053
| 42.11
| {{UDnote|step=2}}
| {{UDnote|fifth=34|step=2}}
|-
|-
| style="text-align:center;" | 3
| 3
| style="text-align:right;" | 63.1579
| 63.16
| {{UDnote|step=3}}
| {{UDnote|fifth=34|step=3}}
|-
|-
| style="text-align:center;" | 4
| 4
| style="text-align:right;" | 84.2105
| 84.21
| {{UDnote|step=4}}
| {{UDnote|fifth=34|step=4}}
|-
|-
| style="text-align:center;" | 5
| 5
| style="text-align:right;" | 105.2632
| 105.26
| {{UDnote|step=5}}
| {{UDnote|fifth=34|step=5}}
|-
|-
| style="text-align:center;" | 6
| 6
| style="text-align:right;" | 126.3158
| 126.32
| {{UDnote|step=6}}
| {{UDnote|fifth=34|step=6}}
|-
|-
| style="text-align:center;" | 7
| 7
| style="text-align:right;" | 147.3684
| 147.37
| {{UDnote|step=7}}
| {{UDnote|fifth=34|step=7}}
|-
|-
| style="text-align:center;" | 8
| 8
| style="text-align:right;" | 168.42105
| 168.42
| {{UDnote|step=8}}
| {{UDnote|fifth=34|step=8}}
|-
|-
| style="text-align:center;" | 9
| 9
| style="text-align:right;" | 189.4737
| 189.47
| {{UDnote|step=9}}
| {{UDnote|fifth=34|step=9}}
|-
|-
| style="text-align:center;" | 10
| 10
| style="text-align:right;" | 210.5263
| 210.53
| {{UDnote|step=10}}
| {{UDnote|fifth=34|step=10}}
|-
|-
| style="text-align:center;" | 11
| 11
| style="text-align:right;" | 231.57895
| 231.58
| {{UDnote|step=11}}
| {{UDnote|fifth=34|step=11}}
|-
|-
| style="text-align:center;" | 12
| 12
| style="text-align:right;" | 252.6316
| 252.63
| {{UDnote|step=12}}
| {{UDnote|fifth=34|step=12}}
|-
|-
| style="text-align:center;" | 13
| 13
| style="text-align:right;" | 273.6842
| 273.68
| {{UDnote|step=13}}
| {{UDnote|fifth=34|step=13}}
|-
|-
| style="text-align:center;" | 14
| 14
| style="text-align:right;" | 294.7368
| 294.74
| {{UDnote|step=14}}
| {{UDnote|fifth=34|step=14}}
|-
|-
| style="text-align:center;" | 15
| 15
| style="text-align:right;" | 315.7895
| 315.79
| {{UDnote|step=15}}
| {{UDnote|fifth=34|step=15}}
|-
|-
| style="text-align:center;" | 16
| 16
| style="text-align:right;" | 336.8421
| 336.84
| {{UDnote|step=16}}
| {{UDnote|fifth=34|step=16}}
|-
|-
| style="text-align:center;" | 17
| 17
| style="text-align:right;" | 357.8947
| 357.89
| {{UDnote|step=17}}
| {{UDnote|fifth=34|step=17}}
|-
|-
| style="text-align:center;" | 18
| 18
| style="text-align:right;" | 378.9474
| 378.95
| {{UDnote|step=18}}
| {{UDnote|fifth=34|step=18}}
|-
|-
| style="text-align:center;" | 19
| 19
| style="text-align:right;" | 400
| 400.00
| {{UDnote|step=19}}
| {{UDnote|fifth=34|step=19}}
|-
|-
| style="text-align:center;" | 20
| 20
| style="text-align:right;" | 421.0526
| 421.05
| {{UDnote|step=20}}
| {{UDnote|fifth=34|step=20}}
|-
|-
| style="text-align:center;" | 21
| 21
| style="text-align:right;" | 442.1053
| 442.11
| {{UDnote|step=21}}
| {{UDnote|fifth=34|step=21}}
|-
|-
| style="text-align:center;" | 22
| 22
| style="text-align:right;" | 463.1579
| 463.16
| {{UDnote|step=22}}
| {{UDnote|fifth=34|step=22}}
|-
|-
| style="text-align:center;" | 23
| 23
| style="text-align:right;" | 484.2105
| 484.21
| {{UDnote|step=23}}
| {{UDnote|fifth=34|step=23}}
|-
|-
| style="text-align:center;" | 24
| 24
| style="text-align:right;" | 505.2632
| 505.26
| {{UDnote|step=24}}
| {{UDnote|fifth=34|step=24}}
|-
|-
| style="text-align:center;" | 25
| 25
| style="text-align:right;" | 526.3158
| 526.32
| {{UDnote|step=25}}
| {{UDnote|fifth=34|step=25}}
|-
|-
| style="text-align:center;" | 26
| 26
| style="text-align:right;" | 547.3684
| 547.37
| {{UDnote|step=26}}
| {{UDnote|fifth=34|step=26}}
|-
|-
| style="text-align:center;" | 27
| 27
| style="text-align:right;" | 568.42105
| 568.42
| {{UDnote|step=27}}
| {{UDnote|fifth=34|step=27}}
|-
|-
| style="text-align:center;" | 28
| 28
| style="text-align:right;" | 589.4737
| 589.47
| {{UDnote|step=28}}
| {{UDnote|fifth=34|step=28}}
|-
|-
| style="text-align:center;" | 29
| 29
| style="text-align:right;" | 610.5263
| 610.53
| {{UDnote|step=29}}
| {{UDnote|fifth=34|step=29}}
|-
|-
| style="text-align:center;" | 30
| 30
| style="text-align:right;" | 631.57895
| 631.58
| {{UDnote|step=30}}
| {{UDnote|fifth=34|step=30}}
|-
|-
| style="text-align:center;" | 31
| 31
| style="text-align:right;" | 652.6316
| 652.63
| {{UDnote|step=31}}
| {{UDnote|fifth=34|step=31}}
|-
|-
| style="text-align:center;" | 32
| 32
| style="text-align:right;" | 673.6842
| 673.68
| {{UDnote|step=32}}
| {{UDnote|fifth=34|step=32}}
|-
|-
| style="text-align:center;" | 33
| 33
| style="text-align:right;" | 694.7368
| 694.74
| {{UDnote|step=33}}
| {{UDnote|fifth=34|step=33}}
|-
|-
| style="text-align:center;" | 34
| 34
| style="text-align:right;" | 715.7895
| 715.79
| {{UDnote|step=34}}
| {{UDnote|fifth=34|step=34}}
|-
|-
| style="text-align:center;" | 35
| 35
| style="text-align:right;" | 736.8421
| 736.84
| {{UDnote|step=35}}
| {{UDnote|fifth=34|step=35}}
|-
|-
| style="text-align:center;" | 36
| 36
| style="text-align:right;" | 757.8947
| 757.89
| {{UDnote|step=36}}
| {{UDnote|fifth=34|step=36}}
|-
|-
| style="text-align:center;" | 37
| 37
| style="text-align:right;" | 778.9474
| 778.95
| {{UDnote|step=37}}
| {{UDnote|fifth=34|step=37}}
|-
|-
| style="text-align:center;" | 38
| 38
| style="text-align:right;" | 800
| 800.00
| {{UDnote|step=38}}
| {{UDnote|fifth=34|step=38}}
|-
|-
| style="text-align:center;" | 39
| 39
| style="text-align:right;" | 821.0526
| 821.05
| {{UDnote|step=39}}
| {{UDnote|fifth=34|step=39}}
|-
|-
| style="text-align:center;" | 40
| 40
| style="text-align:right;" | 842.1053
| 842.11
| {{UDnote|step=40}}
| {{UDnote|fifth=34|step=40}}
|-
|-
| style="text-align:center;" | 41
| 41
| style="text-align:right;" | 863.1579
| 863.16
| {{UDnote|step=41}}
| {{UDnote|fifth=34|step=41}}
|-
|-
| style="text-align:center;" | 42
| 42
| style="text-align:right;" | 884.2105
| 884.21
| {{UDnote|step=42}}
| {{UDnote|fifth=34|step=42}}
|-
|-
| style="text-align:center;" | 43
| 43
| style="text-align:right;" | 905.2632
| 905.26
| {{UDnote|step=43}}
| {{UDnote|fifth=34|step=43}}
|-
|-
| style="text-align:center;" | 44
| 44
| style="text-align:right;" | 926.3158
| 926.32
| {{UDnote|step=44}}
| {{UDnote|fifth=34|step=44}}
|-
|-
| style="text-align:center;" | 45
| 45
| style="text-align:right;" | 947.3684
| 947.37
| {{UDnote|step=45}}
| {{UDnote|fifth=34|step=45}}
|-
|-
| style="text-align:center;" | 46
| 46
| style="text-align:right;" | 968.42105
| 968.42
| {{UDnote|step=46}}
| {{UDnote|fifth=34|step=46}}
|-
|-
| style="text-align:center;" | 47
| 47
| style="text-align:right;" | 989.4737
| 989.47
| {{UDnote|step=47}}
| {{UDnote|fifth=34|step=47}}
|-
|-
| style="text-align:center;" | 48
| 48
| style="text-align:right;" | 1010.5263
| 1010.53
| {{UDnote|step=48}}
| {{UDnote|fifth=34|step=48}}
|-
|-
| style="text-align:center;" | 49
| 49
| style="text-align:right;" | 1031.57895
| 1031.58
| {{UDnote|step=49}}
| {{UDnote|fifth=34|step=49}}
|-
|-
| style="text-align:center;" | 50
| 50
| style="text-align:right;" | 1052.6316
| 1052.63
| {{UDnote|step=50}}
| {{UDnote|fifth=34|step=50}}
|-
|-
| style="text-align:center;" | 51
| 51
| style="text-align:right;" | 1073.6842
| 1073.68
| {{UDnote|step=51}}
| {{UDnote|fifth=34|step=51}}
|-
|-
| style="text-align:center;" | 52
| 52
| style="text-align:right;" | 1094.7368
| 1094.74
| {{UDnote|step=52}}
| {{UDnote|fifth=34|step=52}}
|-
|-
| style="text-align:center;" | 53
| 53
| style="text-align:right;" | 1115.7895
| 1115.79
| {{UDnote|step=53}}
| {{UDnote|fifth=34|step=53}}
|-
|-
| style="text-align:center;" | 54
| 54
| style="text-align:right;" | 1136.8421
| 1136.84
| {{UDnote|step=54}}
| {{UDnote|fifth=34|step=54}}
|-
|-
| style="text-align:center;" | 55
| 55
| style="text-align:right;" | 1157.8947
| 1157.89
| {{UDnote|step=55}}
| {{UDnote|fifth=34|step=55}}
|-
|-
| style="text-align:center;" | 56
| 56
| style="text-align:right;" | 1178.9474
| 1178.95
| {{UDnote|step=56}}
| {{UDnote|fifth=34|step=56}}
|-
|-
| style="text-align:center;" | 57
| 57
| style="text-align:right;" | 1200
| 1200.00
| {{UDnote|step=57}}
| {{UDnote|fifth=34|step=57}}
|}
|}


<u>'''Modes of 57edo'''</u>
== Notation ==
=== Ups and downs notation ===
Spoken as up, downsharp, sharp, upsharp, etc. Note that downsharp can be respelled as dup (double-up), and upflat as dud.
{{sharpness-sharp3a}}
 
Using [[Helmholtz–Ellis]] accidentals, 57edo can also be notated using [[Alternative symbols for ups and downs notation#Sharp-3|alternative ups and downs]]:
{{Sharpness-sharp3}}
Here, a sharp raises by three steps, and a flat lowers by three steps, so arrows can be used to fill in the gap. If the arrows are taken to have their own layer of enharmonic spellings, some notes may be best spelled with double arrows.
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[50edo#Sagittal notation|50]], [[64edo#Sagittal notation|64]], and [[71edo#Sagittal notation|71b]], and is a superset of the notation for [[19edo#Sagittal notation|19-EDO]].
 
==== Evo flavor ====
<imagemap>
File:57-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 671 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 160 106 [[1053/1024]]
default [[File:57-EDO_Evo_Sagittal.svg]]
</imagemap>
 
==== Revo flavor ====
<imagemap>
File:57-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 647 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 160 106 [[1053/1024]]
default [[File:57-EDO_Revo_Sagittal.svg]]
</imagemap>
 
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.


2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)
== Scales ==
* 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L&nbsp;21s (augene)


[[Category:57edo]]
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->
[[Category:Heinz]]
[[Category:Heinz]]
[[Category:Mothra]]
[[Category:Mothra]]
[[Category:Subgroup]]
{{todo|add rank 2 temperaments table}}
 
== Instruments ==
 
Since 57edo contains [[19edo]] as a non-trivial subset, it would be possible to use three 19edo instruments tuned 1\57 apart from each other to play the full gamut of 57edo.
 
A [[Lumatone mapping for 57edo]] is available.
 
== Music ==
 
; [[Bryan Deister]]
* [https://www.youtube.com/watch?v=4NZvSgS3ryY ''57edo improv''] (2025)

Latest revision as of 01:07, 20 August 2025

← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526 ¢ 
Fifth 33\57 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 34\57 (715.789 ¢)
Dual flat fifth 33\57 (694.737 ¢) (→ 11\19)
Dual major 2nd 10\57 (210.526 ¢)
Consistency limit 7
Distinct consistency limit 7

57 equal divisions of the octave (abbreviated 57edo or 57ed2), also called 57-tone equal temperament (57tet) or 57 equal temperament (57et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 57 equal parts of about 21.1 ¢ each. Each step represents a frequency ratio of 21/57, or the 57th root of 2.

Theory

57edo is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate.

Using the full prime-limit patent val, the equal temperament tempers out 81/80, 1029/1024, and 3125/3072 in the 7-limit; and 99/98, 385/384, 441/440, and 625/616 in the 11-limit. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46 & 57 temperament heinz. It can also be used to tune mothra as well as trismegistus.

Odd harmonics

Approximation of odd harmonics in 57edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -0.40 +6.62 -3.95 +1.58 +6.47 +0.31 -2.78 -7.62 +3.30
Relative (%) -34.3 -35.0 -1.9 +31.4 -18.8 +7.5 +30.7 +1.5 -13.2 -36.2 +15.7
Steps
(reduced)
90
(33)
132
(18)
160
(46)
181
(10)
197
(26)
211
(40)
223
(52)
233
(5)
242
(14)
250
(22)
258
(30)

Subsets and supersets

57edo contains 3edo and 19edo as subsets.

Intervals

# Cents Ups and downs notation
(Flat Fifth 11\19)
Ups and downs notation
(Sharp Fifth 34\57)
0 0.00 D D
1 21.05 ^D, ^E♭♭♭ ^D, E♭
2 42.11 vD♯, vE♭♭ ^^D, ^E♭
3 63.16 D♯, E♭♭ ^3D, ^^E♭
4 84.21 ^D♯, ^E♭♭ ^4D, ^3E♭
5 105.26 vD𝄪, vE♭ ^5D, ^4E♭
6 126.32 D𝄪, E♭ v4D♯, v5E
7 147.37 ^D𝄪, ^E♭ v3D♯, v4E
8 168.42 vD♯𝄪, vE vvD♯, v3E
9 189.47 E vD♯, vvE
10 210.53 ^E, ^F♭♭ D♯, vE
11 231.58 vE♯, vF♭ E
12 252.63 E♯, F♭ F
13 273.68 ^E♯, ^F♭ ^F, G♭
14 294.74 vE𝄪, vF ^^F, ^G♭
15 315.79 F ^3F, ^^G♭
16 336.84 ^F, ^G♭♭♭ ^4F, ^3G♭
17 357.89 vF♯, vG♭♭ ^5F, ^4G♭
18 378.95 F♯, G♭♭ v4F♯, v5G
19 400.00 ^F♯, ^G♭♭ v3F♯, v4G
20 421.05 vF𝄪, vG♭ vvF♯, v3G
21 442.11 F𝄪, G♭ vF♯, vvG
22 463.16 ^F𝄪, ^G♭ F♯, vG
23 484.21 vF♯𝄪, vG G
24 505.26 G ^G, A♭
25 526.32 ^G, ^A♭♭♭ ^^G, ^A♭
26 547.37 vG♯, vA♭♭ ^3G, ^^A♭
27 568.42 G♯, A♭♭ ^4G, ^3A♭
28 589.47 ^G♯, ^A♭♭ ^5G, ^4A♭
29 610.53 vG𝄪, vA♭ v4G♯, v5A
30 631.58 G𝄪, A♭ v3G♯, v4A
31 652.63 ^G𝄪, ^A♭ vvG♯, v3A
32 673.68 vG♯𝄪, vA vG♯, vvA
33 694.74 A G♯, vA
34 715.79 ^A, ^B♭♭♭ A
35 736.84 vA♯, vB♭♭ ^A, B♭
36 757.89 A♯, B♭♭ ^^A, ^B♭
37 778.95 ^A♯, ^B♭♭ ^3A, ^^B♭
38 800.00 vA𝄪, vB♭ ^4A, ^3B♭
39 821.05 A𝄪, B♭ ^5A, ^4B♭
40 842.11 ^A𝄪, ^B♭ v4A♯, v5B
41 863.16 vA♯𝄪, vB v3A♯, v4B
42 884.21 B vvA♯, v3B
43 905.26 ^B, ^C♭♭ vA♯, vvB
44 926.32 vB♯, vC♭ A♯, vB
45 947.37 B♯, C♭ B
46 968.42 ^B♯, ^C♭ C
47 989.47 vB𝄪, vC ^C, D♭
48 1010.53 C ^^C, ^D♭
49 1031.58 ^C, ^D♭♭♭ ^3C, ^^D♭
50 1052.63 vC♯, vD♭♭ ^4C, ^3D♭
51 1073.68 C♯, D♭♭ ^5C, ^4D♭
52 1094.74 ^C♯, ^D♭♭ v4C♯, v5D
53 1115.79 vC𝄪, vD♭ v3C♯, v4D
54 1136.84 C𝄪, D♭ vvC♯, v3D
55 1157.89 ^C𝄪, ^D♭ vC♯, vvD
56 1178.95 vC♯𝄪, vD C♯, vD
57 1200.00 D D

Notation

Ups and downs notation

Spoken as up, downsharp, sharp, upsharp, etc. Note that downsharp can be respelled as dup (double-up), and upflat as dud.

Step offset 0 1 2 3 4 5 6 7
Sharp symbol  
Flat symbol
 

Using Helmholtz–Ellis accidentals, 57edo can also be notated using alternative ups and downs:

Step offset 0 1 2 3 4 5 6 7
Sharp symbol  
Flat symbol

Here, a sharp raises by three steps, and a flat lowers by three steps, so arrows can be used to fill in the gap. If the arrows are taken to have their own layer of enharmonic spellings, some notes may be best spelled with double arrows.

Sagittal notation

This notation uses the same sagittal sequence as EDOs 50, 64, and 71b, and is a superset of the notation for 19-EDO.

Evo flavor

Sagittal notationPeriodic table of EDOs with sagittal notation1053/1024

Revo flavor

Sagittal notationPeriodic table of EDOs with sagittal notation1053/1024

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.

Scales

  • 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)

Instruments

Since 57edo contains 19edo as a non-trivial subset, it would be possible to use three 19edo instruments tuned 1\57 apart from each other to play the full gamut of 57edo.

A Lumatone mapping for 57edo is available.

Music

Bryan Deister