25edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''25EDF''' is the equal division of the just perfect fifth into 25 parts of 28.0782 cents each, corresponding to 42.7378 edo (similar to every fourth ste..." |
m Removing from Category:Edonoi using Cat-a-lot |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} It corresponds to 42.7378 [[edo]] (similar to every fourth step of [[171edo]]). | |||
It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by [[43edo]], [[128edo]], [[171edo]], [[214edo]], [[299edo]], and [[385edo]]. | |||
Lookalikes: [[43edo]], [[68edt]] | Lookalikes: [[43edo]], [[68edt]] | ||
==Intervals== | == Harmonics == | ||
{| class="wikitable" | {{Harmonics in equal|25|3|2|intervals=prime}} | ||
{{Harmonics in equal|25|3|2|start=12|collapsed=1|intervals=prime}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ style="font-size: 105%;" | Intervals of 25edf | |||
|- | |||
! Degree | |||
! Cents | |||
! Corresponding<br />JI intervals | |||
! Comments | |||
|- | |||
| colspan="2" | 0 | |||
| '''exact [[1/1]]''' | |||
| | |||
|- | |||
| 1 | |||
| 28.0782 | |||
| 51/50 | |||
| | |||
|- | |||
| 2 | |||
| 56.1564 | |||
| 26/25 | |||
| | |||
|- | |||
| 3 | |||
| 84.2346 | |||
| [[21/20]] | |||
| | |||
|- | |||
| 4 | |||
| 112.3128 | |||
| [[16/15]] | |||
| | |||
|- | |||
| 5 | |||
| 140.391 | |||
| 13/12 | |||
| | |||
|- | |||
| 6 | |||
| 168.4692 | |||
| | |||
| | |||
|- | |||
| 7 | |||
| 196.5474 | |||
| [[28/25]] | |||
| | |||
|- | |||
| 8 | |||
| 224.6256 | |||
| 8/7 | |||
| | |||
|- | |||
| 9 | |||
| 252.7038 | |||
| | |||
| | |||
|- | |||
| 10 | |||
| 280.782 | |||
| [[20/17]] | |||
| | |||
|- | |||
| 11 | |||
| 308.8602 | |||
| | |||
| pseudo-[[6/5]] | |||
|- | |||
| 12 | |||
| 336.9384 | |||
| | |||
| | |||
|- | |||
| 13 | |||
| 365.0166 | |||
| | |||
| | |||
|- | |||
| 14 | |||
| 393.0948 | |||
| | |||
| pseudo-[[5/4]] | |||
|- | |||
| 15 | |||
| 421.173 | |||
| 51/40 | |||
| | |||
|- | |||
| 16 | |||
| 449.2512 | |||
| | |||
| | |||
|- | |||
| 17 | |||
| 477.3294 | |||
| | |||
| | |||
|- | |||
| 18 | |||
| 505.4076 | |||
| 75/56 | |||
| pseudo-[[4/3]] | |||
|- | |||
| 19 | |||
| 533.4858 | |||
| | |||
| | |||
|- | |||
| 20 | |||
| 561.564 | |||
| | |||
| | |||
|- | |||
| 21 | |||
| 589.6422 | |||
| [[45/32]] | |||
| | |||
|- | |||
| 22 | |||
| 617.7204 | |||
| [[10/7]] | |||
| | |||
|- | |||
| 23 | |||
| 645.7986 | |||
| | |||
| | |||
|- | |- | ||
| 24 | |||
| 673.8768 | |||
| | |||
| | |||
|- | |- | ||
| | | 25 | ||
| | | 701.955 | ||
| '''exact [[3/2]]''' | |||
| | | just perfect fifth | ||
|- | |- | ||
| | | 26 | ||
| | | 730.033 | ||
| | | 153/100 | ||
| | |||
|- | |- | ||
| | | 27 | ||
| | | 757.1114 | ||
| | | 39/25 | ||
| | |||
|- | |- | ||
| | | 28 | ||
| | | 786.1896 | ||
| | | 63/40 | ||
| | |||
|- | |- | ||
| | | 29 | ||
| | | 814.2678 | ||
| | | 8/5 | ||
| | |||
|- | |- | ||
| | | 30 | ||
| | | 842.346 | ||
| | | 13/8 | ||
| | |||
|- | |- | ||
| | | 31 | ||
| | | 870.2452 | ||
| | |||
| | |||
|- | |- | ||
| | | 32 | ||
| | | 898.5024 | ||
| | | 42/25 | ||
| | |||
|- | |- | ||
| | | 33 | ||
| | | 926.5806 | ||
| | | 12/7 | ||
| | |||
|- | |- | ||
| | | 34 | ||
| | | 954.6588 | ||
| | |||
| | |||
|- | |- | ||
| | | 35 | ||
| | | 982.737 | ||
| | | 30/17 | ||
| | |||
|- | |- | ||
| | | 36 | ||
| | | 1010.8152 | ||
| | |||
| pseudo-9/5 | |||
|- | |- | ||
| | | 37 | ||
| | | 1038.8934 | ||
| | |||
| | |||
|- | |- | ||
| | | 38 | ||
| | | 1066.9716 | ||
| | |||
| | |||
|- | |- | ||
| | | 39 | ||
| | | 1095.0498 | ||
| | |||
| pseudo-15/8 | |||
|- | |- | ||
| | | 40 | ||
| | | 1123.128 | ||
| | | 153/80 | ||
| | |||
|- | |- | ||
| | | 41 | ||
| | | 1151.2062 | ||
| | |||
| | |||
|- | |- | ||
| | | 42 | ||
| | | 1179.2844 | ||
| | |||
| | |||
|- | |- | ||
| | | 43 | ||
| | | 1207.3526 | ||
| | | 225/112 | ||
| pseudo-2/1 | |||
|- | |- | ||
| | | 44 | ||
| | | 1235.4408 | ||
| | |||
| | |||
|- | |- | ||
| | | 45 | ||
| | | 1263.519 | ||
| | |||
| | |||
|- | |- | ||
| | | 46 | ||
| | | 1291.5972 | ||
| | | 135/64 | ||
| | |||
|- | |- | ||
| | | 47 | ||
| | | 1319.6754 | ||
| | | 15/7 | ||
| | |||
|- | |- | ||
| | | 48 | ||
| | | 1347.7536 | ||
| | |||
| | |||
|- | |- | ||
| | | 49 | ||
| | | 1375.8318 | ||
| | |||
| | |||
|- | |- | ||
| | | 50 | ||
| | | 1403.91 | ||
| '''exact''' 9/4 | |||
| | | | ||
|} | |} | ||
{{todo|expand}} | |||
Latest revision as of 19:21, 1 August 2025
← 24edf | 25edf | 26edf → |
25 equal divisions of the perfect fifth (abbreviated 25edf or 25ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 25 equal parts of about 28.1 ¢ each. Each step represents a frequency ratio of (3/2)1/25, or the 25th root of 3/2. It corresponds to 42.7378 edo (similar to every fourth step of 171edo).
It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by 43edo, 128edo, 171edo, 214edo, 299edo, and 385edo.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.4 | +7.4 | -6.6 | +0.6 | +4.3 | -4.2 | +8.7 | +12.7 | -9.2 | +10.7 | +7.5 |
Relative (%) | +26.2 | +26.2 | -23.4 | +2.0 | +15.2 | -14.9 | +31.1 | +45.3 | -32.7 | +38.1 | +26.9 | |
Steps (reduced) |
43 (18) |
68 (18) |
99 (24) |
120 (20) |
148 (23) |
158 (8) |
175 (0) |
182 (7) |
193 (18) |
208 (8) |
212 (12) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.1 | +0.8 | +2.6 | -11.0 | +5.7 | -11.5 | -13.1 | -7.1 | +4.9 | +12.9 | -11.5 |
Relative (%) | +36.0 | +3.0 | +9.3 | -39.1 | +20.1 | -41.1 | -46.7 | -25.1 | +17.3 | +46.1 | -41.0 | |
Steps (reduced) |
223 (23) |
229 (4) |
232 (7) |
237 (12) |
245 (20) |
251 (1) |
253 (3) |
259 (9) |
263 (13) |
265 (15) |
269 (19) |
Intervals
Degree | Cents | Corresponding JI intervals |
Comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 28.0782 | 51/50 | |
2 | 56.1564 | 26/25 | |
3 | 84.2346 | 21/20 | |
4 | 112.3128 | 16/15 | |
5 | 140.391 | 13/12 | |
6 | 168.4692 | ||
7 | 196.5474 | 28/25 | |
8 | 224.6256 | 8/7 | |
9 | 252.7038 | ||
10 | 280.782 | 20/17 | |
11 | 308.8602 | pseudo-6/5 | |
12 | 336.9384 | ||
13 | 365.0166 | ||
14 | 393.0948 | pseudo-5/4 | |
15 | 421.173 | 51/40 | |
16 | 449.2512 | ||
17 | 477.3294 | ||
18 | 505.4076 | 75/56 | pseudo-4/3 |
19 | 533.4858 | ||
20 | 561.564 | ||
21 | 589.6422 | 45/32 | |
22 | 617.7204 | 10/7 | |
23 | 645.7986 | ||
24 | 673.8768 | ||
25 | 701.955 | exact 3/2 | just perfect fifth |
26 | 730.033 | 153/100 | |
27 | 757.1114 | 39/25 | |
28 | 786.1896 | 63/40 | |
29 | 814.2678 | 8/5 | |
30 | 842.346 | 13/8 | |
31 | 870.2452 | ||
32 | 898.5024 | 42/25 | |
33 | 926.5806 | 12/7 | |
34 | 954.6588 | ||
35 | 982.737 | 30/17 | |
36 | 1010.8152 | pseudo-9/5 | |
37 | 1038.8934 | ||
38 | 1066.9716 | ||
39 | 1095.0498 | pseudo-15/8 | |
40 | 1123.128 | 153/80 | |
41 | 1151.2062 | ||
42 | 1179.2844 | ||
43 | 1207.3526 | 225/112 | pseudo-2/1 |
44 | 1235.4408 | ||
45 | 1263.519 | ||
46 | 1291.5972 | 135/64 | |
47 | 1319.6754 | 15/7 | |
48 | 1347.7536 | ||
49 | 1375.8318 | ||
50 | 1403.91 | exact 9/4 |