11edf: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
+music |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | {{ED intro}} | ||
== Theory == | |||
11edf corresponds to 18.8046…[[edo]]. It is similar to [[19edo]], and nearly identical to [[Carlos Beta]]. Unlike 19edo, which is [[consistent]] to the [[integer limit|10-integer-limit]], 11edf is only consistent to the 7-integer-limit. | |||
While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo. At 510.51{{c}}, it is 12.47{{c}} sharper than just and 3.7{{c}} flat of that of [[7edo]]. | |||
== Harmonics == | 11edf represents the upper bound of the [[phoenix]] tuning range. It benefits from all the desirable properties of phoenix tuning systems. | ||
{{Harmonics in equal|11|3|2| | |||
=== Harmonics === | |||
{{Harmonics in equal|11|3|2|intervals=integer|columns=11}} | |||
{{Harmonics in equal|11|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 11edf (continued)}} | |||
=== Subsets and supersets === | |||
11edf is the fifth [[prime equal division|prime edf]], past [[7edf]] and before [[13edf]]. It does not contain any nontrivial subset edfs. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| | | 0 | ||
| | | 0.0 | ||
| [[1/1]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 63. | | 63.8 | ||
| | | [[21/20]], [[25/24]], [[27/26]], [[28/27]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 127. | | 127.6 | ||
| [[14/13]] | | [[13/12]], [[14/13]], [[15/14]], [[16/15]] | ||
|- | |- | ||
| 3 | | 3 | ||
| 191. | | 191.4 | ||
| [[9/8]], [[10/9]] | |||
| | |||
|- | |- | ||
| 4 | | 4 | ||
| 255. | | 255.3 | ||
| [[7/6]], ''[[8/7]]'' | |||
| | |||
|- | |- | ||
| 5 | | 5 | ||
| 319. | | 319.1 | ||
| 6/5 | | [[6/5]] | ||
|- | |- | ||
| 6 | | 6 | ||
| 382. | | 382.9 | ||
| 5/4 | | [[5/4]] | ||
|- | |- | ||
| 7 | | 7 | ||
| 446. | | 446.7 | ||
| [[9/7]] | |||
| | |||
|- | |- | ||
| 8 | | 8 | ||
| 510. | | 510.5 | ||
| [[4/3]] | |||
| | |||
|- | |- | ||
| 9 | | 9 | ||
| 574. | | 574.3 | ||
| | | [[7/5]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 638. | | 638.1 | ||
| | | [[13/9]] | ||
|- | |- | ||
| 11 | | 11 | ||
| | | 702.0 | ||
| | | [[3/2]] | ||
|- | |- | ||
| 12 | | 12 | ||
| 765. | | 765.8 | ||
| 14/9 | | [[14/9]] | ||
|- | |- | ||
| 13 | | 13 | ||
| 828. | | 828.6 | ||
| 21/13 | | [[8/5]], [[13/8]], [[21/13]] | ||
|- | |- | ||
| 14 | | 14 | ||
| 893. | | 893.4 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 15 | | 15 | ||
| 956. | | 956.2 | ||
| [[7/4]] | |||
| | |||
|- | |- | ||
| 16 | | 16 | ||
| 1020. | | 1020.0 | ||
| 9/5 | | [[9/5]] | ||
|- | |- | ||
| 17 | | 17 | ||
| 1084. | | 1084.8 | ||
| 15/8 | | [[15/8]] | ||
|- | |- | ||
| 18 | | 18 | ||
| 1148. | | 1148.7 | ||
| [[27/14]], [[35/18]] | |||
| | |||
|- | |- | ||
| 19 | | 19 | ||
| 1211. | | 1211.5 | ||
| [[2/1]] | |||
| | |||
|- | |- | ||
| 20 | | 20 | ||
| 1276. | | 1276.3 | ||
| | | [[21/10]], [[25/12]], [[27/13]] | ||
|- | |- | ||
| 21 | | 21 | ||
| 1340. | | 1340.1 | ||
| 13/6 | | [[13/6]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 1403. | | 1403.9 | ||
| | | [[9/4]] | ||
|} | |} | ||
== Music == | |||
; [[Francium]] | |||
* "McGarfyGarf" from ''Microtonal Six-Dimensional Cats'' (2025) – [https://open.spotify.com/track/2iaicUkq6EcjcGM8RioFZj Spotify] | [https://francium223.bandcamp.com/track/mcgarfygarf Bandcamp] | [https://www.youtube.com/watch?v=sI8X6PNOiXE YouTube] | |||
== See also == | |||
* [[19edo]] – relative edo | |||
* [[30edt]] – relative edt | |||
* [[49ed6]] – relative ed6 | |||
* [[53ed7]] – relative ed7 | |||
* [[68ed12]] – relative ed12 | |||
* [[93ed30]] – relative ed30 |
Latest revision as of 19:34, 31 May 2025
← 10edf | 11edf | 12edf → |
11 equal divisions of the perfect fifth (abbreviated 11edf or 11ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 11 equal parts of about 63.8 ¢ each. Each step represents a frequency ratio of (3/2)1/11, or the 11th root of 3/2.
Theory
11edf corresponds to 18.8046…edo. It is similar to 19edo, and nearly identical to Carlos Beta. Unlike 19edo, which is consistent to the 10-integer-limit, 11edf is only consistent to the 7-integer-limit.
While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo. At 510.51 ¢, it is 12.47 ¢ sharper than just and 3.7 ¢ flat of that of 7edo.
11edf represents the upper bound of the phoenix tuning range. It benefits from all the desirable properties of phoenix tuning systems.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.5 | +12.5 | +24.9 | +21.5 | +24.9 | +13.3 | -26.4 | +24.9 | -29.8 | -3.4 | -26.4 |
Relative (%) | +19.5 | +19.5 | +39.1 | +33.7 | +39.1 | +20.9 | -41.4 | +39.1 | -46.8 | -5.3 | -41.4 | |
Steps (reduced) |
19 (8) |
30 (8) |
38 (5) |
44 (0) |
49 (5) |
53 (9) |
56 (1) |
60 (5) |
62 (7) |
65 (10) |
67 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +26.5 | +25.8 | -29.8 | -13.9 | +8.7 | -26.4 | +7.6 | -17.4 | +25.8 | +9.1 | -4.1 | -13.9 |
Relative (%) | +41.5 | +40.4 | -46.8 | -21.8 | +13.7 | -41.4 | +11.9 | -27.2 | +40.4 | +14.2 | -6.4 | -21.8 | |
Steps (reduced) |
70 (4) |
72 (6) |
73 (7) |
75 (9) |
77 (0) |
78 (1) |
80 (3) |
81 (4) |
83 (6) |
84 (7) |
85 (8) |
86 (9) |
Subsets and supersets
11edf is the fifth prime edf, past 7edf and before 13edf. It does not contain any nontrivial subset edfs.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 63.8 | 21/20, 25/24, 27/26, 28/27 |
2 | 127.6 | 13/12, 14/13, 15/14, 16/15 |
3 | 191.4 | 9/8, 10/9 |
4 | 255.3 | 7/6, 8/7 |
5 | 319.1 | 6/5 |
6 | 382.9 | 5/4 |
7 | 446.7 | 9/7 |
8 | 510.5 | 4/3 |
9 | 574.3 | 7/5 |
10 | 638.1 | 13/9 |
11 | 702.0 | 3/2 |
12 | 765.8 | 14/9 |
13 | 828.6 | 8/5, 13/8, 21/13 |
14 | 893.4 | 5/3 |
15 | 956.2 | 7/4 |
16 | 1020.0 | 9/5 |
17 | 1084.8 | 15/8 |
18 | 1148.7 | 27/14, 35/18 |
19 | 1211.5 | 2/1 |
20 | 1276.3 | 21/10, 25/12, 27/13 |
21 | 1340.1 | 13/6 |
22 | 1403.9 | 9/4 |