4L 7s: Difference between revisions
→Intervals: Adopt intervals table |
ArrowHead294 (talk | contribs) |
||
Line 20: | Line 20: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
| | ! Generators | ||
| | | −11 || −10 || −9 || −8 || −7 || −6 || −5 || −4 || −3 || −2 || −1 || 0 || +1 || +2 || +3 || +4 || +5 || +6 || +7 || +8 || +9 || +10 || +11 | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| 0 | |||
| | |||
| | |||
| | |||
| | |||
| +5 | |||
| +6 | |||
| +7 | |||
| | |||
| +9 | |||
| +10 | |||
| +11 | |||
|- | |- | ||
| d12 | ! Interval quality | ||
| d9 | | d12 || d9 || m6 || m3 || m11 || m8 || m5 || m2 || m10 || m7 || P4 || P1 || P9 || M6 || M3 || M11 || M8 || M5 || M2 || M10 || M7 || A4 || A1 | ||
| m6 | |||
| m3 | |||
| m11 | |||
| m8 | |||
| m5 | |||
| m2 | |||
| m10 | |||
| m7 | |||
| P4 | |||
| P1 | |||
| P9 | |||
| M6 | |||
| M3 | |||
| M11 | |||
| M8 | |||
| M5 | |||
| M2 | |||
| M10 | |||
| M7 | |||
| A4 | |||
| A1 | |||
|} | |} | ||
Revision as of 12:34, 26 July 2024
↖ 3L 6s | ↑ 4L 6s | 5L 6s ↗ |
← 3L 7s | 4L 7s | 5L 7s → |
↙ 3L 8s | ↓ 4L 8s | 5L 8s ↘ |
┌╥┬╥┬┬╥┬┬╥┬┬┐ │║│║││║││║│││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLssLsL
4L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 7 small steps, repeating every octave. 4L 7s is a child scale of 4L 3s, expanding it by 4 tones. Generators that produce this scale range from 872.7 ¢ to 900 ¢, or from 300 ¢ to 327.3 ¢. One of the harmonic entropy minimums in this range is Kleismic/Hanson.
Name
TAMNAMS formerly used the name kleistonic for the name of this scale (prefix klei-). Other names include p-chro smitonic or smipechromic.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 109.1 ¢ |
Major 1-mosstep | M1ms | L | 109.1 ¢ to 300.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 218.2 ¢ |
Major 2-mosstep | M2ms | L + s | 218.2 ¢ to 300.0 ¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | L + 2s | 300.0 ¢ to 327.3 ¢ |
Augmented 3-mosstep | A3ms | 2L + s | 327.3 ¢ to 600.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 300.0 ¢ to 436.4 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 436.4 ¢ to 600.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 300.0 ¢ to 545.5 ¢ |
Major 5-mosstep | M5ms | 2L + 3s | 545.5 ¢ to 600.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 600.0 ¢ to 654.5 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 654.5 ¢ to 900.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 600.0 ¢ to 763.6 ¢ |
Major 7-mosstep | M7ms | 3L + 4s | 763.6 ¢ to 900.0 ¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 2L + 6s | 600.0 ¢ to 872.7 ¢ |
Perfect 8-mosstep | P8ms | 3L + 5s | 872.7 ¢ to 900.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 900.0 ¢ to 981.8 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 981.8 ¢ to 1200.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 3L + 7s | 900.0 ¢ to 1090.9 ¢ |
Major 10-mosstep | M10ms | 4L + 6s | 1090.9 ¢ to 1200.0 ¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 4L + 7s | 1200.0 ¢ |
Genchain
The generator chain for this scale is as follows:
Generators | −11 | −10 | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interval quality | d12 | d9 | m6 | m3 | m11 | m8 | m5 | m2 | m10 | m7 | P4 | P1 | P9 | M6 | M3 | M11 | M8 | M5 | M2 | M10 | M7 | A4 | A1 |
Tuning ranges
Soft range
The soft range for tunings of p-chro smitonic encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320¢.
This is the range associated with extensions of Orgone[7]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.
Soft p-chro smitonic edos include 15edo and 26edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various soft tunings:
15edo (basic) | 26edo (soft) | Some JI approximations | |
---|---|---|---|
generator (g) | 4\15, 320.00 | 7\26, 323.08 | 77/64, 6/5 |
L (octave - 3g) | 2\15, 160.00 | 3\26, 138.46 | 12/11, 13/12 |
s (4g - octave) | 1\15, 80.00 | 2\19, 92.31 | 21/20, 22/21, 20/19 |
Hypohard

Hypohard tunings of p-chro smitonic have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79¢ and flatter than 4\15 = 320¢.
This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth (3/2), an octave above. This is the range associated with the eponymous Kleismic (aka Hanson) temperament and its extensions.
Hypohard p-chro smitonic edos include 15edo, 19edo, and 34edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hypohard p-chro smitonic tunings:
15edo (basic) | 19edo (hard) | 34edo (semihard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 4\15, 320.00 | 5\19, 315.79 | 9\34, 317.65 | 6/5 |
L (octave - 3g) | 2\15, 160.00 | 3\19, 189.47 | 5\34, 176.47 | 10/9, 11/10 (in 15edo) |
s (4g - octave) | 1\15, 80.00 | 1\19, 63.16 | 2\34, 70.59 | 25/24, 26/25 (in better kleismic tunings) |
Parahard
Parahard tunings of p-chro smitonic have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.
Parahard p-chro smitonic edos include 19edo, 23edo, and 42edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various parahard p-chro smitonic tunings:
19edo (hard) | 23edo (superhard) | 42edo (parahard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 5\19, 315.79 | 6\23, 313.04 | 11\42, 314.29 | 6/5 |
L (octave - 3g) | 3\19, 189.47 | 4\23, 208.70 | 7\42, 200.00 | 10/9, 9/8 |
s (4g - octave) | 1\19, 63.16 | 1\23, 52.17 | 2\42, 57.14 | 28/27, 33/32 |
Hyperhard
Hyperhard tunings of p-chro smitonic have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.
The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above. These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.
Hyperhard p-chro smitonic edos include 23edo, 31edo, and 27edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hyperhard p-chro smitonic tunings:
23edo (superhard) | 31edo (extrahard) | 27edo (pentahard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 6\23, 313.04 | 8\31, 309.68 | 7\27, 311.11 | 6/5 |
L (octave - 3g) | 4\23, 208.70 | 6\31, 232.26 | 5\27, 222.22 | 8/7, 9/8 |
s (4g - octave) | 1\23, 52.17 | 1\31, 38.71 | 1\27, 44.44 | 36/35, 45/44 |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
10|0 | 1 | LsLssLssLss | Perf. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. |
9|1 | 9 | LssLsLssLss | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. |
8|2 | 6 | LssLssLsLss | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Perf. |
7|3 | 3 | LssLssLssLs | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
6|4 | 11 | sLsLssLssLs | Perf. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
5|5 | 8 | sLssLsLssLs | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
4|6 | 5 | sLssLssLsLs | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Perf. |
3|7 | 2 | sLssLssLssL | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. |
2|8 | 10 | ssLsLssLssL | Perf. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. |
1|9 | 7 | ssLssLsLssL | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. |
0|10 | 4 | ssLssLssLsL | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Perf. |
Temperaments
Scales
Scale tree
The spectrum looks like this:
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||||
8\11 | 872.727 | 327.273 | 1 | 1 | 1.000 | ||||||
43\59 | 874.576 | 325.424 | 6 | 5 | 1.200 | Oregon | |||||
35\48 | 875.000 | 325.000 | 5 | 4 | 1.250 | ||||||
62\85 | 875.294 | 324.706 | 9 | 7 | 1.286 | ||||||
27\37 | 875.676 | 324.324 | 4 | 3 | 1.333 | ||||||
73\100 | 876.000 | 324.000 | 11 | 8 | 1.375 | ||||||
46\63 | 876.190 | 323.810 | 7 | 5 | 1.400 | ||||||
65\89 | 876.404 | 323.596 | 10 | 7 | 1.428 | Orgone | |||||
19\26 | 876.923 | 323.077 | 3 | 2 | 1.500 | L/s = 3/2 | |||||
68\93 | 877.419 | 322.581 | 11 | 7 | 1.571 | Magicaltet | |||||
49\67 | 877.612 | 322.388 | 8 | 5 | 1.600 | ||||||
79\108 | 877.778 | 322.222 | 13 | 8 | 1.625 | Golden superkleismic | |||||
30\41 | 878.049 | 321.951 | 5 | 3 | 1.667 | Superkleismic | |||||
71\97 | 878.351 | 321.649 | 12 | 7 | 1.714 | ||||||
41\56 | 878.571 | 321.429 | 7 | 4 | 1.750 | ||||||
52\71 | 878.873 | 321.127 | 9 | 5 | 1.800 | ||||||
11\15 | 880.000 | 320.000 | 2 | 1 | 2.000 | Basic p-chro smitonic (Generators smaller than this are proper) | |||||
47\64 | 881.250 | 318.750 | 9 | 4 | 2.250 | ||||||
36\49 | 881.633 | 318.367 | 7 | 3 | 2.333 | Catalan | |||||
61\83 | 881.928 | 318.072 | 12 | 5 | 2.400 | ||||||
25\34 | 882.353 | 317.647 | 5 | 2 | 2.500 | ||||||
64\87 | 882.759 | 317.241 | 13 | 5 | 2.600 | Countercata | |||||
39\53 | 883.019 | 316.981 | 8 | 3 | 2.667 | Hanson/cata | |||||
53\72 | 883.333 | 316.667 | 11 | 4 | 2.750 | Catakleismic | |||||
14\19 | 884.211 | 315.789 | 3 | 1 | 3.000 | L/s = 3/1 | |||||
45\61 | 885.246 | 314.754 | 10 | 3 | 3.333 | Parakleismic | |||||
31\42 | 885.714 | 314.286 | 7 | 2 | 3.500 | ||||||
48\65 | 886.154 | 313.846 | 11 | 3 | 3.667 | ||||||
17\23 | 886.957 | 313.043 | 4 | 1 | 4.000 | ||||||
37\50 | 888.000 | 312.000 | 9 | 2 | 4.500 | Oolong | |||||
20\27 | 888.889 | 311.111 | 5 | 1 | 5.000 | Starlingtet | |||||
23\31 | 890.323 | 309.677 | 6 | 1 | 6.000 | Myna | |||||
3\4 | 900.000 | 300.000 | 1 | 0 | → inf |