Porcupine family
The porcupine family is the rank-2 family of temperaments whose 5-limit parent comma is 250/243, also called the maximal diesis or porcupine comma.
Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.
Notice 250/243 = (55/54)(100/99), the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Temperaments discussed elsewhere include jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
Optimal ET sequence: 7, 15, 22, 95c
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
- gencom: [2 10/9; 55/54, 100/99]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.8867
- POTE: ~2 = 1\1, ~11/10 = 164.0777
Optimal ET sequence: 7, 15, 22, 73ce, 95ce
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tunings:
- CTE: ~2 = 1\1, ~88/65 = 518.0865
- POTE: ~2 = 1\1, ~88/65 = 518.2094
Optimal ET sequence: 7, 23bc, 30, 37, 44
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59, 81bd
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.1055
- POTE: ~2 = 1\1, ~11/10 = 162.747
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.4425
- POTE: ~2 = 1\1, ~11/10 = 162.708
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- eigenmonzo (unchanged-interval) basis: 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
Optimal ET sequence: 7, 15, 22f, 37f
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 162.6361
- POTE: ~2 = 1\1, ~11/10 = 162.277
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- eigenmonzo (unchanged-interval) basis: 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
Optimal ET sequence: 15, 22, 37
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.3781
- POTE: ~2 = 1\1, ~11/10 = 162.482
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- eigenmonzo (unchanged-interval) basis: 2.13/7
Optimal ET sequence: 15f, 22f, 37, 59f
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.6778
- POTE: ~2 = 1\1, ~11/10 = 163.688
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Optimal ET sequence: 7, 15f, 22
Badness: 0.026043
Opossum
Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Subgroup: 2.3.5.7
Comma list: 28/27, 126/125
Mapping: [⟨1 2 3 4], ⟨0 -3 -5 -9]]
Wedgie: ⟨⟨ 3 5 9 1 6 7 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3063
Optimal ET sequence: 7d, 8d, 15
Badness: 0.040650
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 77/75
Mapping: [⟨1 2 3 4 4], ⟨0 -3 -5 -9 -4]]
Wedgie: ⟨⟨ 3 5 9 4 1 6 -4 7 -8 -20 ]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.3646
Minimax tuning:
- 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15
Badness: 0.022325
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 28/27, 40/39, 55/54, 66/65
Mapping: [⟨1 2 3 4 4 4], ⟨0 -3 -5 -9 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.6312
Minimax tuning:
- 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15, 38bceff
Badness: 0.019389
Porky
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
Optimal ET sequence: 7d, 15d, 22, 29, 51, 73c
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Wedgie: ⟨⟨ 3 5 16 4 1 17 -4 23 -8 -44 ]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.3207
- POTE: ~2 = 1\1, ~11/10 = 164.552
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- eigenmonzo (unchanged-interval) basis: 2.7/5
Optimal ET sequence: 7d, 15d, 22, 51
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.4782
- POTE: ~2 = 1\1, ~11/10 = 164.953
Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff
Badness: 0.026543
Coendou
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
Optimal ET sequence: 7, 22d, 29, 65c, 94cd
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 165.9246
- POTE: ~2 = 1\1, ~11/10 = 165.981
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65ce
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 166.0459
- POTE: ~2 = 1\1, ~11/10 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65cef
Badness: 0.030233
Hystrix
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix is very high in error due to the large disparity between typical porcupine generators and a justly-tuned 8/7, and is usually considered an exotemperament. A generator of 2\15 or 9\68 can be used for hystrix.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
Optimal ET sequence: 7, 8d, 15d
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.7684
- POTE: ~2 = 1\1, ~11/10 = 158.750
Optimal ET sequence: 7, 8d, 15d
Badness: 0.026790
Oxygen
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.
Subgroup: 2.3.5.7
Comma list: 21/20, 175/162
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -2]]
Wedgie: ⟨⟨ 3 5 2 1 -5 -9 ]]
Badness: 0.059866
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. It is a strong extension of BPS (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only patent val) tuning, but if you are looking for an alternative you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is echidna, which offers much more accuracy. They merge on 22edo.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
Optimal ET sequence: 8d, 14c, 22
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Wedgie: ⟨⟨ 6 10 10 8 2 -1 -8 -5 -16 -12 ]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.5281
- POTE: ~7/5 = 1\2, ~9/7 = 435.386
Optimal ET sequence: 8d, 14c, 22, 58ce
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 436.3087
- POTE: ~7/5 = 1\2, ~9/7 = 435.861
Optimal ET sequence: 8d, 14cf, 22
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.1856
- POTE: ~7/5 = 1\2, ~9/7 = 437.078
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Wedgie: ⟨⟨ 6 10 10 -14 2 -1 -43 -5 -67 -74 ]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.3289
- POTE: ~7/5 = 1\2, ~9/7 = 435.425
Optimal ET sequence: 22
Badness: 0.068406
- Music
- Phobos Light by Chris Vaisvil in hedgehog[14] to 22edo.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Wedgie: ⟨⟨ 6 10 3 8 2 -12 -8 -21 -16 12 ]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.8017
- POTE: ~2 = 1\1, ~21/20 = 82.504
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.9123
- POTE: ~2 = 1\1, ~21/20 = 82.530
Optimal ET sequence: 14cf, 15, 29, 44d
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 82.0342
- POTE: ~2 = 1\1, ~21/20 = 81.759
Optimal ET sequence: 14c, 15, 29f, 44dff
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
Optimal ET sequence: 8d, 21cd, 29, 37, 66
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Wedgie: ⟨⟨ 9 15 19 12 3 5 -12 2 -24 -32 ]]
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 454.5050
- POTE: ~2 = 1\1, ~9/7 = 454.512
Optimal ET sequence: 8d, 21cde, 29, 37, 66
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tunings:
- CTE: ~2 = 1\1, ~13/10 = 454.4798
- POTE: ~2 = 1\1, ~13/10 = 454.529
Optimal ET sequence: 8d, 21cdef, 29, 37, 66
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
Optimal ET sequence: 1c, 21c, 22
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.7019
- POTE: ~2 = 1\1, ~36/35 = 54.376
Optimal ET sequence: 1ce, 21ce, 22
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.5751
- POTE: ~2 = 1\1, ~36/35 = 54.665
Optimal ET sequence: 1ce, 21cef, 22
Badness: 0.044739