My temperaments of interest, ordered by absolute step size:

I hope I can do some music with these at some point in future.

  • Intercalary leap tunings based on things like 16/15ths equal temperament where an octave has an alternating number of steps like a calendar year

Subpages

Solar Calendar Leap Rule scales

Intercalary temperaments

Whatever

⟨0.000, -0.876, -1.141, -2.519, -1.719] - 41 & 231 mistunings

⟨0.000, 0.484, -5.826, -2.972, 4.780] - pure 41edo mistuning

Selection: 5 and 11 better in 41 & 231 than in 41edo.

New album project

Won't be revealing the song titles, but the tunings are as follows:

  1. 118edo
  2. 1619edo
  3. 400edo
  4. 231edo
  5. 576edo
  6. 2016edo
  7. Hg spectrum + 1080edo
  8. 69edo
  9. 91edo
  10. 84edo
  11. 353edo
  12. 1789edo
  13. 293edo

Template tester

Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo".

Approximation of prime harmonics in 1ed81/80
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
Error Absolute (¢) +4.35 -9.40 +9.50 +7.66 -0.60 -10.23 -1.52 -0.52 -8.69 -1.37 -9.30 +6.99 +1.32 +4.89 +1.44 +8.51 -5.11 +1.70 -10.18 -3.04
Relative (%) +20.2 -43.7 +44.2 +35.6 -2.8 -47.6 -7.1 -2.4 -40.4 -6.4 -43.2 +32.5 +6.1 +22.7 +6.7 +39.6 -23.8 +7.9 -47.3 -14.1
Step 56 88 130 157 193 206 228 237 252 271 276 291 299 303 310 320 328 331 338 343
Approximation of prime harmonics in 80ed2.718281828459
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
Error Absolute (¢) -9.78 +2.40 +5.30 +7.08 +3.64 -4.24 +7.42 +9.63 +3.47 -8.30 +6.08 +2.74 -1.86 +2.25 -0.26 +8.15 -4.39 +2.82 -8.12 -0.31
Relative (%) -45.2 +11.1 +24.5 +32.7 +16.8 -19.6 +34.3 +44.5 +16.0 -38.4 +28.1 +12.7 -8.6 +10.4 -1.2 +37.7 -20.3 +13.0 -37.5 -1.4
Steps
(reduced)
55
(55)
88
(8)
129
(49)
156
(76)
192
(32)
205
(45)
227
(67)
236
(76)
251
(11)
269
(29)
275
(35)
289
(49)
297
(57)
301
(61)
308
(68)
318
(78)
326
(6)
329
(9)
336
(16)
341
(21)