3L 4s
User:IlL/Template:RTT restriction
↖ 2L 3s | ↑ 3L 3s | 4L 3s ↗ |
← 2L 4s | 3L 4s | 4L 4s → |
↙ 2L 5s | ↓ 3L 5s | 4L 5s ↘ |
┌╥┬╥┬╥┬┬┐ │║│║│║│││ │││││││││ └┴┴┴┴┴┴┴┘
ssLsLsL
3L 4s or mosh is the MOS scale built from a generator that falls between 1\3 (one degree of 3edo – 400 cents) and 2\7 (two degrees of 7edo – 343 cents).
Notation
The notation used in this article is sLsLsLs = JKLMNOPJ unless specified otherwise. We denote raising and lowering by a chroma (L − s) by & "amp" and @ "at". (Mnemonics: & "and" means additional pitch. @ "at" rhymes with "flat".)
Thus the 10edo gamut is as follows:
J/K@/P& K/J& K&/L@ L/M@ M/L& M&/N@ N/O@ O/N& O&/P@ P/J@ J
Tuning ranges
Broadly speaking, the entire tuning range from minisoft to ultrasoft, which implies a generator flatter than 3\10 = 360¢, makes "neutral third" scales, where two generators can be interpreted a 3/2.
Ultrasoft
Ultrasoft mosh tunings have step ratios that are less than 4:3, which implies a generator flatter than 7\24 = 350¢.
Ultrasoft mosh can be considered "meantone mosh". This is because the large step is a "meantone" in these tunings, somewhere between near-10/9 (as in 38edo) and near-9/8 (as in 24edo).
Ultrasoft mosh EDOs include 24edo, 31edo, 38edo, and 55edo.
- 24edo can be used to make large and small steps more distinct (the step ratio is 4/3), or for its nearly pure 3/2.
- 38edo can be used to tune the minor and major mosthirds near 6/5 and 11/9, respectively
The sizes of the generator, large step and small step of mosh are as follows in various ultrasoft mosh tunings.
24edo | 31edo | 38edo | 55edo | JI intervals represented | |
---|---|---|---|---|---|
generator (g) | 7\24, 350.00 | 9\31, 348.39 | 11\38, 347.37 | 16\55, 349.09 | 11/9 |
L (4g - octave) | 4\24, 200.00 | 5\31, 193.55 | 6\38, 189.47 | 9\55, 196.36 | 9/8, 10/9 |
s (octave - 3g) | 3\24, 150.00 | 4\31, 154.84 | 5\38, 157.89 | 7\55, 152.72 | 11/10, 12/11 |
Quasisoft
Quasisoft tunings of mosh have a step ratio between 3/2 and 5/3, implying a generator sharper than 5\17 = 352.94¢ and flatter than 8\27 = 355.56¢.
The large step is a sharper major second in these tunings than in ultrasoft tunings. These tunings could be considered "parapyth mosh" or "archy mosh", in analogy to ultrasoft mosh being meantone mosh.
17edo | 27edo | 44edo | |
---|---|---|---|
generator (g) | 5\17, 352.94 | 8\27, 355.56 | 13\44, 354.55 |
L (4g - octave) | 3\17, 211.76 | 5\27, 222.22 | 8\44, 218.18 |
s (octave - 3g) | 2\17, 141.18 | 3\27, 133.33 | 5\44, 137.37 |
Ultrahard
Ultra tunings of mosh have a step ratio greater than 4/1, implying a generator sharper than 5\16 = 375¢. The generator is thus near a 5/4 major third, five of which add up to an approximate 3/1. The 7-note MOS only has two perfect fifths, so extending the chain to bigger MOSes, such as the 3L 7s 10-note MOS, is suggested for getting 5-limit harmony.
16edo | 19edo | 22edo | 41edo | JI intervals represented | |
---|---|---|---|---|---|
generator (g) | 5\16, 375.00 | 6\19, 378.95 | 7\22, 381.82 | 13\41, 380.49 | 5/4 |
L (4g - octave) | 4\16, 300.00 | 5\19, 315.79 | 6\22, 327.27 | 11\41, 321.95 | 6/5 |
s (octave - 3g) | 1\16, 75.00 | 1\19, 63.16 | 1\22, 54.54 | 2\41, 58.54 | 25/24 |
Modes
The various modes of 3L 4s (with Modal UDP Notation and nicknames coined by Andrew Heathwaite) are:
Mode | UDP | Nickname |
s L s L s L s | 3|3 | bish |
L s L s L s s | 6|0 | dril |
s L s L s s L | 2|4 | fish |
L s L s s L s | 5|1 | gil |
s L s s L s L | 1|5 | jwl |
L s s L s L s | 4|2 | kleeth |
s s L s L s L | 0|6 | led |
Scale tree
The spectrum looks like this:
g | 2g | 3g | 4g (-1200) | comments | |||
---|---|---|---|---|---|---|---|
1\3 | 400.000 | 800.000 | 1200.000 | 400.000 | |||
15\46 | 391.304 | 782.609 | 1173.913 | 365.217 | |||
14\43 | 390.698 | 781.395 | 1172.093 | 362.791 | |||
13\40 | 390.000 | 780.000 | 1170.000 | 360.000 | |||
12\37 | 389.189 | 778.378 | 1167.568 | 356.757 | |||
11\34 | 388.235 | 776.471 | 1164.706 | 352.941 | |||
10\31 | 387.097 | 774.194 | 1161.290 | 348.387 | |||
19\59 | 386.441 | 772.881 | 1159.322 | 345.763 | |||
9\28 | 385.714 | 771.429 | 1157.143 | 342.857 | |||
8\25 | 384.000 | 768.000 | 1152.000 | 336.000 | |||
23\72 | 383.333 | 766.667 | 1150.000 | 333.333 | |||
15\47 | 382.988 | 765.957 | 1148.936 | 331.915 | |||
7\22 | 381.818 | 763.636 | 1145.455 | 327.273 | |||
13\41 | 380.488 | 760.976 | 1141.463 | 321.951 | |||
19\60 | 380.000 | 760.000 | 1140.000 | 320.000 | |||
25\79 | 379.747 | 759.494 | 1139.2405 | 318.987 | |||
6\19 | 378.947 | 757.895 | 1136.842 | 315.789 | |||
11\35 | 377.143 | 754.286 | 1131.429 | 308.571 | |||
16\51 | 376.471 | 752.941 | 1129.412 | 305.882 | |||
5\16 | 375.000 | 750.000 | 1125.000 | 300.000 | |||
24\77 | 374.026 | 748.052 | 1122.078 | 296.104 | |||
19\61 | 373.7705 | 747.541 | 1121.3115 | 295.082 | |||
14\45 | 373.333 | 746.667 | 1120.000 | 293.333 | |||
9\29 | 372.414 | 744.828 | 1117.241 | 289.655 | |||
13\42 | 371.429 | 742.857 | 1114.286 | 285.714 | |||
17\55 | 370.909 | 741.818 | 1112.727 | 283.636 | |||
4\13 | 369.231 | 738.462 | 1107.692 | 276.923 | L/s = 3 | ||
23\75 | 368.000 | 736.000 | 1104.000 | 272.000 |
| ||
19\62 | 367.742 | 735.484 | 1103.226 | 270.968 | |||
15\49 | 367.347 | 734.694 | 1102.041 | 269.388 | |||
11\36 | 366.667 | 733.333 | 1100.000 | 266.667 | |||
366.256 | 732.513 | 1198.77 | 265.026 | ||||
7\23 | 365.217 | 730.435 | 1095.652 | 260.870 | |||
17\56 | 364.286 | 728.571 | 1092.857 | 257.143 | |||
10\33 | 363.636 | 727.272 | 1090.909 | 254.545 | |||
13\43 | 362.791 | 725.581 | 1088.372 | 251.163 | |||
16\53 | 362.264 | 724.528 | 1086.7925 | 249.057 | |||
19\63 | 361.905 | 723.8095 | 1085.714 | 247.619 | |||
3\10 | 360.000 | 720.000 | 1080.000 | 240.000 | Boundary of propriety(generators smaller than this are proper) | ||
38\127 | 359.055 | 718.110 | 1077.165 | 236.2205 | |||
35\117 | 358.974 | 717.949 | 1076.923 | 235.898 | |||
32\107 | 358.8785 | 717.757 | 1076.6355 | 235.514 | |||
29\97 | 358.763 | 717.526 | 1076.289 | 235.0515 | |||
26\87 | 358.621 | 717.241 | 1075.862 | 234.483 | |||
23\77 | 358.442 | 716.883 | 1075.325 | 233.767 | |||
20\67 | 358.209 | 716.418 | 1074.627 | 232.836 | |||
17\57 | 357.895 | 715.7895 | 1073.684 | 231.579 | |||
14\47 | 357.447 | 714.894 | 1072.340 | 229.787 | |||
11\37 | 356.757 | 713.514 | 1070.270 | 227.027 | |||
356.5035 | 713.007 | 1069.511 | 226.014 | ||||
8\27 | 355.556 | 711.111 | 1066.667 | 222.222 | |||
354.930 | 709.859 | 1064.789 | 219.718 | Golden mosh | |||
21\71 | 354.783 | 709.565 | 1064.348 | 219.13 | |||
13\44 | 354.5455 | 709.091 | 1063.636 | 218.182 | |||
354.088 | 708.177 | 1062.266 | 216.354 | ||||
5\17 | 352.941 | 705.882 | 1058.824 | 211.765 | Optimum rank range (L/s=3/2) | ||
12\41 | 351.220 | 702.439 | 1053.659 | 204.878 | |||
7\24 | 350.000 | 700.000 | 1050.000 | 200.000 | |||
16\55 | 349.091 | 698.182 | 1047.273 | 196.364 | |||
9\31 | 348.387 | 696.774 | 1045.161 | 193.548 | |||
11\38 | 347.368 | 694.737 | 1042.105 | 189.474 | |||
2\7 | 342.857 | 685.714 | 1028.571 | 171.429 |