User:Ganaram inukshuk/5L 2s
↖ 4L 1s | ↑ 5L 1s | 6L 1s ↗ |
← 4L 2s | 5L 2s | 6L 2s → |
↙ 4L 3s | ↓ 5L 3s | 6L 3s ↘ |
┌╥╥╥┬╥╥┬┐ │║║║│║║││ │││││││││ └┴┴┴┴┴┴┴┘
sLLsLLL
- This is a test page. For the main page, see 5L 2s.
5L 2s, named diatonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 685.7 ¢ to 720 ¢, or from 480 ¢ to 514.3 ¢.
Name
TAMNAMS suggests the name diatonic for this scale, which commonly refers to a scale with 5 whole steps and 2 small steps.
Under TAMNAMS and for all scale pattern pages on the wiki, the term diatonic exclusively refers to 5L 2s. Other diatonic-based scales, such as Zarlino, blackdye and diasem, are called detempered diatonic scales (for an RTT-based philosophy) or deregularized diatonic scales (for an RTT-agnostic philosophy). The terms diatonic-like or diatonic-based may also be used to refer to diatonic-based scales, depending on what's contextually the most appropriate.
Notation
Intervals
Intervals are identical to that of standard notation. As such, the usual interval qualities of major/minor and augmented/perfect/diminished apply here.
Interval class | Large variety | Small variety | ||
---|---|---|---|---|
Size | Quality | Size | Quality | |
1st (unison) | 0 | Perfect | 0 | Perfect |
2nd | L | Major | s | Minor |
3rd | 2L | Major | L + s | Minor |
4th | 3L | Augmented | 2L + 1s | Perfect |
5th | 3L + 1s | Perfect | 2L + 2s | Diminished |
6th | 4L + 1s | Major | 3L + 2s | Minor |
7th | 5L + 1s | Major | 4L + 2s | Minor |
8th (octave) | 5L + 2s | Perfect | 5L + 2s | Perfect |
Note names
Note names are identical to that of standard notation. Thus, the basic (12edo) gamut for 5L 2s is the following:
J, J&/K@, K, L, L&/M@, M, M&/N@, N, N&/O@, O, P, P&/J@, J
Theory
Introduction to large and small steps
The familiar pattern of 5 whole steps and 2 half steps, commonly written as WWHWWWH for the major scale, has step sizes of 2 (whole step) and 1 (small step), producing 12edo. This can be generalized into the form LLsLLLs, with whole-number sizes for the large steps (denoted as "L") and small steps (denoted as "s").
Different edos are produced by using different ratios of step sizes. A few examples are shown below.
Step ratio (L:s) | Step pattern | EDO | Selected multiples |
---|---|---|---|
1:1 | 1 1 1 1 1 1 1 | 7edo | 14edo, 21edo, etc. |
4:3 | 4 4 3 4 4 4 3 | 26edo | |
3:2 | 3 3 2 3 3 3 2 | 19edo | 38edo |
5:3 | 5 5 3 5 5 5 3 | 31edo | |
2:1 | 2 2 1 2 2 2 1 | 12edo (standard tuning) | 24edo, 36edo, etc. |
5:2 | 5 5 2 5 5 5 2 | 29edo | |
3:1 | 3 3 1 3 3 3 1 | 17edo | 34edo |
4:1 | 4 4 1 4 4 4 1 | 22edo | |
1:0 | 1 1 0 1 1 1 0 | 5edo | 10edo, 15edo, etc. |
Edos that are multiples of the examples above can be reached by entering non-simplified step ratios. For example, edos that are multiples of 12 are reached by using larger values whose ratio simplifies to 2:1, such as 4:2 for 24edo.
The step ratios 1:1 and 1:0 represent the limits for valid step ratios. A step ratio that approaches 1:1, where the large and small step are equal to one another, approaches 7edo, and a step ratio that approaches 1:0, where the small step "collapses" to zero, approaches 5edo.
The step ratios shown above form a continuum of step ratios. The section Tuning spectrum shows how this is made, as well as a larger spectrum.
Rank-2 temperament interpretations
- Main article: 5L 2s/Temperaments
5L 2s has several rank-2 temperament interpretations, such as:
- Meantone, with generators around 696.2¢. This includes:
- Flattone, with generators around 693.7¢.
- Schismic, with generators around 702¢.
- Parapyth, with generators around 704.7¢.
- Archy, with generators around 709.3¢. This includes:
- Supra, with generators around 707.2¢
- Superpyth, with generators around 710.3¢
- Ultrapyth, with generators around 713.7¢.
Step ratio ranges
Simple step ratios
17edo and 19edo, produced using step ratios of 3:1 and 3:2 respectively, are the smallest edos that offer a greater variety of pitches than 12edo. Note that any enharmonic equivalences that 12edo has no longer hold for either 17edo or 19edo, as shown in the table below.
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 12edo (Basic, L:s = 2:1) | 17edo (Hard, L:s = 3:1) | 19edo (Soft, L:s = 3:2) | Approx. JI Ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 1 | 100 | 1 | 70.6 | 2 | 126.3 | |
Major 1-diadegree | 2 | 200 | 3 | 211.8 | 3 | 189.5 | |
Minor 2-diadegree | 3 | 300 | 4 | 282.4 | 5 | 315.8 | |
Major 2-diadegree | 4 | 400 | 6 | 423.5 | 6 | 378.9 | |
Perfect 3-diadegree | 5 | 500 | 7 | 494.1 | 8 | 505.3 | |
Augmented 3-diadegree | 6 | 600 | 9 | 635.3 | 9 | 568.4 | |
Diminished 4-diadegree | 6 | 600 | 8 | 564.7 | 10 | 631.6 | |
Perfect 4-diadegree | 7 | 700 | 10 | 705.9 | 11 | 694.7 | |
Minor 5-diadegree | 8 | 800 | 11 | 776.5 | 13 | 821.1 | |
Major 5-diadegree | 9 | 900 | 13 | 917.6 | 14 | 884.2 | |
Minor 6-diadegree | 10 | 1000 | 14 | 988.2 | 16 | 1010.5 | |
Major 6-diadegree | 11 | 1100 | 16 | 1129.4 | 17 | 1073.7 | |
Perfect 7-diadegree (octave) | 12 | 1200 | 17 | 1200 | 19 | 1200 | 2/1 (exact) |
Parasoft step ratios
- Main article: Flattone
Parasoft step ratios (between 4:3 and 3:2) correspond to flattone temperaments, characterized by flattened perfect 5ths (flat of 702¢) to produce major 3rds that are flatter than 5/4 (386¢).
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 19edo (Soft, L:s = 3:2) | 26edo (Supersoft, L:s = 4:3) | 45edo (L:s = 7:5) | 64edo (L:s = 10:7) | Approx. JI Ratios | ||||
---|---|---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 2 | 126.3 | 3 | 138.5 | 5 | 133.3 | 7 | 131.3 | |
Major 1-diadegree | 3 | 189.5 | 4 | 184.6 | 7 | 186.7 | 10 | 187.5 | |
Minor 2-diadegree | 5 | 315.8 | 7 | 323.1 | 12 | 320 | 17 | 318.8 | |
Major 2-diadegree | 6 | 378.9 | 8 | 369.2 | 14 | 373.3 | 20 | 375 | |
Perfect 3-diadegree | 8 | 505.3 | 11 | 507.7 | 19 | 506.7 | 27 | 506.2 | |
Augmented 3-diadegree | 9 | 568.4 | 12 | 553.8 | 21 | 560 | 30 | 562.5 | |
Diminished 4-diadegree | 10 | 631.6 | 14 | 646.2 | 24 | 640 | 34 | 637.5 | |
Perfect 4-diadegree | 11 | 694.7 | 15 | 692.3 | 26 | 693.3 | 37 | 693.8 | |
Minor 5-diadegree | 13 | 821.1 | 18 | 830.8 | 31 | 826.7 | 44 | 825 | |
Major 5-diadegree | 14 | 884.2 | 19 | 876.9 | 33 | 880 | 47 | 881.2 | |
Minor 6-diadegree | 16 | 1010.5 | 22 | 1015.4 | 38 | 1013.3 | 54 | 1012.5 | |
Major 6-diadegree | 17 | 1073.7 | 23 | 1061.5 | 40 | 1066.7 | 57 | 1068.8 | |
Perfect 7-diadegree (octave) | 19 | 1200 | 26 | 1200 | 45 | 1200 | 64 | 1200 | 2/1 (exact) |
Hyposoft step ratios
- Main article: Meantone
Hyposoft step ratios (between 3:2 and 2:1) correspond to meantone temperaments, characterized by flattened perfect 5ths (flat of 702¢) to produce diatonic major 3rds that approximate 5/4 (386¢).
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 19edo (Soft, L:s = 3:2) | 31edo (Semisoft, L:s = 5:3) | 43edo (L:s = 7:4) | 50edo (L:s = 8:5) | Approx. JI Ratios | ||||
---|---|---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 2 | 126.3 | 3 | 116.1 | 4 | 111.6 | 5 | 120 | |
Major 1-diadegree | 3 | 189.5 | 5 | 193.5 | 7 | 195.3 | 8 | 192 | |
Minor 2-diadegree | 5 | 315.8 | 8 | 309.7 | 11 | 307 | 13 | 312 | |
Major 2-diadegree | 6 | 378.9 | 10 | 387.1 | 14 | 390.7 | 16 | 384 | |
Perfect 3-diadegree | 8 | 505.3 | 13 | 503.2 | 18 | 502.3 | 21 | 504 | |
Augmented 3-diadegree | 9 | 568.4 | 15 | 580.6 | 21 | 586 | 24 | 576 | |
Diminished 4-diadegree | 10 | 631.6 | 16 | 619.4 | 22 | 614 | 26 | 624 | |
Perfect 4-diadegree | 11 | 694.7 | 18 | 696.8 | 25 | 697.7 | 29 | 696 | |
Minor 5-diadegree | 13 | 821.1 | 21 | 812.9 | 29 | 809.3 | 34 | 816 | |
Major 5-diadegree | 14 | 884.2 | 23 | 890.3 | 32 | 893 | 37 | 888 | |
Minor 6-diadegree | 16 | 1010.5 | 26 | 1006.5 | 36 | 1004.7 | 42 | 1008 | |
Major 6-diadegree | 17 | 1073.7 | 28 | 1083.9 | 39 | 1088.4 | 45 | 1080 | |
Perfect 7-diadegree (octave) | 19 | 1200 | 31 | 1200 | 43 | 1200 | 50 | 1200 | 2/1 (exact) |
Hypohard step ratios
- Main article: Pythagorean tuning and schismatic temperament
The range of hypohard step ratios can be divided into a minihard range (between 2:1 and 5:2) and quasihard range (between 5:2 and 3:1).
Minihard step ratios
Minihard step ratios correspond to Pythagorean tuning and schismatic temperament, characterized by having a perfect 5th that is as close to just (701.96¢) as possible, resulting in a major 3rd of 81/64 (407¢).
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 41edo (L:s = 7:3) | 53edo (L:s = 9:4) | Approx. JI Ratios | ||
---|---|---|---|---|---|
Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 3 | 87.8 | 4 | 90.6 | |
Major 1-diadegree | 7 | 204.9 | 9 | 203.8 | |
Minor 2-diadegree | 10 | 292.7 | 13 | 294.3 | |
Major 2-diadegree | 14 | 409.8 | 18 | 407.5 | |
Perfect 3-diadegree | 17 | 497.6 | 22 | 498.1 | |
Augmented 3-diadegree | 21 | 614.6 | 27 | 611.3 | |
Diminished 4-diadegree | 20 | 585.4 | 26 | 588.7 | |
Perfect 4-diadegree | 24 | 702.4 | 31 | 701.9 | |
Minor 5-diadegree | 27 | 790.2 | 35 | 792.5 | |
Major 5-diadegree | 31 | 907.3 | 40 | 905.7 | |
Minor 6-diadegree | 34 | 995.1 | 44 | 996.2 | |
Major 6-diadegree | 38 | 1112.2 | 49 | 1109.4 | |
Perfect 7-diadegree (octave) | 41 | 1200 | 53 | 1200 | 2/1 (exact) |
Quasihard step ratios
Quasihard step ratios correspond to "neogothic" or "parapyth" systems whose perfect 5th is sharper than just, resulting in major 3rds that are sharper than 81/64.
17edo is considered to be on the sharper end of the neogothic spectrum, with a major 3rd that is more discordant than flatter neogothic tunings.
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 17edo (Hard, L:s = 3:1) | 29edo (Semihard, L:s = 5:2) | 46edo (L:s = 8:3) | Approx. JI Ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 1 | 70.6 | 2 | 82.8 | 3 | 78.3 | |
Major 1-diadegree | 3 | 211.8 | 5 | 206.9 | 8 | 208.7 | |
Minor 2-diadegree | 4 | 282.4 | 7 | 289.7 | 11 | 287 | |
Major 2-diadegree | 6 | 423.5 | 10 | 413.8 | 16 | 417.4 | |
Perfect 3-diadegree | 7 | 494.1 | 12 | 496.6 | 19 | 495.7 | |
Augmented 3-diadegree | 9 | 635.3 | 15 | 620.7 | 24 | 626.1 | |
Diminished 4-diadegree | 8 | 564.7 | 14 | 579.3 | 22 | 573.9 | |
Perfect 4-diadegree | 10 | 705.9 | 17 | 703.4 | 27 | 704.3 | |
Minor 5-diadegree | 11 | 776.5 | 19 | 786.2 | 30 | 782.6 | |
Major 5-diadegree | 13 | 917.6 | 22 | 910.3 | 35 | 913 | |
Minor 6-diadegree | 14 | 988.2 | 24 | 993.1 | 38 | 991.3 | |
Major 6-diadegree | 16 | 1129.4 | 27 | 1117.2 | 43 | 1121.7 | |
Perfect 7-diadegree (octave) | 17 | 1200 | 29 | 1200 | 46 | 1200 | 2/1 (exact) |
Parahard and ultrahard step ratios
- Main article: Archy
The parahard and ultrahard ranges (between 3:1 and 1:1) correspond to archy systems, with perfect 5ths that are significantly sharper than than 702¢.
User:MOS degrees is deprecated. Please use Template:MOS tunings instead. |
Scale degree | 17edo (Hard, L:s = 3:1) | 22edo (Superhard, L:s = 4:1) | 27edo (L:s = 5:1) | 32edo (L:s = 6:1) | Approx. JI Ratios | ||||
---|---|---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | Steps | Cents | ||
Perfect 0-diadegree (unison) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 (exact) |
Minor 1-diadegree | 1 | 70.6 | 1 | 54.5 | 1 | 44.4 | 1 | 37.5 | |
Major 1-diadegree | 3 | 211.8 | 4 | 218.2 | 5 | 222.2 | 6 | 225 | |
Minor 2-diadegree | 4 | 282.4 | 5 | 272.7 | 6 | 266.7 | 7 | 262.5 | |
Major 2-diadegree | 6 | 423.5 | 8 | 436.4 | 10 | 444.4 | 12 | 450 | |
Perfect 3-diadegree | 7 | 494.1 | 9 | 490.9 | 11 | 488.9 | 13 | 487.5 | |
Augmented 3-diadegree | 9 | 635.3 | 12 | 654.5 | 15 | 666.7 | 18 | 675 | |
Diminished 4-diadegree | 8 | 564.7 | 10 | 545.5 | 12 | 533.3 | 14 | 525 | |
Perfect 4-diadegree | 10 | 705.9 | 13 | 709.1 | 16 | 711.1 | 19 | 712.5 | |
Minor 5-diadegree | 11 | 776.5 | 14 | 763.6 | 17 | 755.6 | 20 | 750 | |
Major 5-diadegree | 13 | 917.6 | 17 | 927.3 | 21 | 933.3 | 25 | 937.5 | |
Minor 6-diadegree | 14 | 988.2 | 18 | 981.8 | 22 | 977.8 | 26 | 975 | |
Major 6-diadegree | 16 | 1129.4 | 21 | 1145.5 | 26 | 1155.6 | 31 | 1162.5 | |
Perfect 7-diadegree (octave) | 17 | 1200 | 22 | 1200 | 27 | 1200 | 32 | 1200 | 2/1 (exact) |
Modes
Diatonic modes have standard names from classical music theory:
UDP | Cyclic order |
Step pattern |
Mode names |
---|---|---|---|
6|0 | 1 | LLLsLLs | Lydian |
5|1 | 5 | LLsLLLs | Ionian (major) |
4|2 | 2 | LLsLLsL | Mixolydian |
3|3 | 6 | LsLLLsL | Dorian |
2|4 | 3 | LsLLsLL | Aeolian (minor) |
1|5 | 7 | sLLLsLL | Phrygian |
0|6 | 4 | sLLsLLL | Locrian |
Each mode has the following scale degrees, reached by raising or lowering certain naturals by a chroma.
Mode | Scale degree (on C) | ||||||||
---|---|---|---|---|---|---|---|---|---|
UDP | Step pattern | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th |
6|0 | LLLsLLs | Perfect (C) | Major (D) | Major (E) | Augmented (F#) | Perfect (G) | Major (A) | Major (B) | Perfect (C) |
5|1 | LLsLLLs | Perfect (C) | Major (D) | Major (E) | Perfect (F) | Perfect (G) | Major (A) | Major (B) | Perfect (C) |
4|2 | LLsLLsL | Perfect (C) | Major (D) | Major (E) | Perfect (F) | Perfect (G) | Major (A) | Minor (Bb) | Perfect (C) |
3|3 | LsLLLsL | Perfect (C) | Major (D) | Minor (Eb) | Perfect (F) | Perfect (G) | Major (A) | Minor (Bb) | Perfect (C) |
2|4 | LsLLsLL | Perfect (C) | Major (D) | Minor (Eb) | Perfect (F) | Perfect (G) | Minor (Ab) | Minor (Bb) | Perfect (C) |
1|5 | sLLLsLL | Perfect (C) | Minor (Db) | Minor (Eb) | Perfect (F) | Perfect (G) | Minor (Ab) | Minor (Bb) | Perfect (C) |
0|6 | sLLsLLL | Perfect (C) | Minor (Db) | Minor (Eb) | Perfect (F) | Diminished (Gb) | Minor (Ab) | Minor (Bb) | Perfect (C) |
Scales
Subset and superset scales
5L 2s has a parent scale of 2L 3s, meaning 5L 2s contains 2L 3s as a subset. 5L 2s also has two child scales that both contain 5L 2s as a subset: either 7L 5s (if the step ratio is less than 2:1) or 5L 7s (if the step ratio is greater than 2:1). A step ratio exactly 2:1 will produce 12edo, an equalized form of 5L 7s and 7L 5s.
MODMOS scales and muddles
- 5L 2s Muddles and
Scala files
- Meantone7 – 19edo and 31edo tunings
- Nestoria7 – 171edo tuning
- Pythagorean7 – Pythagorean tuning
- Garibaldi7 – 94edo tuning
- Cotoneum7 – 217edo tuning
- Pepperoni7 – 271edo tuning
- Supra7 – 56edo tuning
- Archy7 – 472edo tuning
Tuning spectrum
A spectrum of step ratios can be produced by starting with the ratios 1:1 and 1:0 and repeatedly finding the mediants between adjacent ratios. The first three iterations are shown below.
Ratios | |
---|---|
1/1 | |
2/1 | |
1/0 |
Ratios | ||
---|---|---|
1/1 | ||
3/2 | ||
2/1 | ||
3/1 | ||
1/0 |
Ratios | |||
---|---|---|---|
1/1 | |||
4/3 | |||
3/2 | |||
5/3 | |||
2/1 | |||
5/2 | |||
3/1 | |||
4/1 | |||
1/0 |
This process can be repeated to produce a finer, larger continuum of step ratios as shown below, with each ratio producing a different edo.Template:Scale tree