User:Ganaram inukshuk/5L 2s

↖ 4L 1s ↑ 5L 1s 6L 1s ↗
← 4L 2s 5L 2s 6L 2s →
↙ 4L 3s ↓ 5L 3s 6L 3s ↘
┌╥╥╥┬╥╥┬┐
│║║║│║║││
│││││││││
└┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLsLLs
sLLsLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 4\7 to 3\5 (685.7 ¢ to 720.0 ¢)
Dark 2\5 to 3\7 (480.0 ¢ to 514.3 ¢)
TAMNAMS information
Name diatonic
Prefix dia-
Abbrev. dia
Related MOS scales
Parent 2L 3s
Sister 2L 5s
Daughters 7L 5s, 5L 7s
Neutralized 3L 4s
2-Flought 12L 2s, 5L 9s
Equal tunings
Equalized (L:s = 1:1) 4\7 (685.7 ¢)
Supersoft (L:s = 4:3) 15\26 (692.3 ¢)
Soft (L:s = 3:2) 11\19 (694.7 ¢)
Semisoft (L:s = 5:3) 18\31 (696.8 ¢)
Basic (L:s = 2:1) 7\12 (700.0 ¢)
Semihard (L:s = 5:2) 17\29 (703.4 ¢)
Hard (L:s = 3:1) 10\17 (705.9 ¢)
Superhard (L:s = 4:1) 13\22 (709.1 ¢)
Collapsed (L:s = 1:0) 3\5 (720.0 ¢)
This is a test page. For the main page, see 5L 2s.

5L 2s, named diatonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 685.7 ¢ to 720 ¢, or from 480 ¢ to 514.3 ¢.

Name

TAMNAMS suggests the name diatonic for this scale, which commonly refers to a scale with 5 whole steps and 2 small steps.

Under TAMNAMS and for all scale pattern pages on the wiki, the term diatonic exclusively refers to 5L 2s. Other diatonic-based scales, such as Zarlino, blackdye and diasem, are called detempered diatonic scales (for an RTT-based philosophy) or deregularized diatonic scales (for an RTT-agnostic philosophy). The terms diatonic-like or diatonic-based may also be used to refer to diatonic-based scales, depending on what's contextually the most appropriate.

Notation

Intervals

Intervals are identical to that of standard notation. As such, the usual interval qualities of major/minor and augmented/perfect/diminished apply here.

Interval class Large variety Small variety
Size Quality Size Quality
1st (unison) 0 Perfect 0 Perfect
2nd L Major s Minor
3rd 2L Major L + s Minor
4th 3L Augmented 2L + 1s Perfect
5th 3L + 1s Perfect 2L + 2s Diminished
6th 4L + 1s Major 3L + 2s Minor
7th 5L + 1s Major 4L + 2s Minor
8th (octave) 5L + 2s Perfect 5L + 2s Perfect

Note names

Note names are identical to that of standard notation. Thus, the basic (12edo) gamut for 5L 2s is the following:

J, J&/K@, K, L, L&/M@, M, M&/N@, N, N&/O@, O, P, P&/J@, J

Theory

Introduction to large and small steps

The familiar pattern of 5 whole steps and 2 half steps, commonly written as WWHWWWH for the major scale, has step sizes of 2 (whole step) and 1 (small step), producing 12edo. This can be generalized into the form LLsLLLs, with whole-number sizes for the large steps (denoted as "L") and small steps (denoted as "s").

Different edos are produced by using different ratios of step sizes. A few examples are shown below.

Step ratio (L:s) Step pattern EDO Selected multiples
1:1 1 1 1 1 1 1 1 7edo 14edo, 21edo, etc.
4:3 4 4 3 4 4 4 3 26edo
3:2 3 3 2 3 3 3 2 19edo 38edo
5:3 5 5 3 5 5 5 3 31edo
2:1 2 2 1 2 2 2 1 12edo (standard tuning) 24edo, 36edo, etc.
5:2 5 5 2 5 5 5 2 29edo
3:1 3 3 1 3 3 3 1 17edo 34edo
4:1 4 4 1 4 4 4 1 22edo
1:0 1 1 0 1 1 1 0 5edo 10edo, 15edo, etc.

Edos that are multiples of the examples above can be reached by entering non-simplified step ratios. For example, edos that are multiples of 12 are reached by using larger values whose ratio simplifies to 2:1, such as 4:2 for 24edo.

The step ratios 1:1 and 1:0 represent the limits for valid step ratios. A step ratio that approaches 1:1, where the large and small step are equal to one another, approaches 7edo, and a step ratio that approaches 1:0, where the small step "collapses" to zero, approaches 5edo.

The step ratios shown above form a continuum of step ratios. The section Tuning spectrum shows how this is made, as well as a larger spectrum.

Rank-2 temperament interpretations

Main article: 5L 2s/Temperaments

5L 2s has several rank-2 temperament interpretations, such as:

  • Meantone, with generators around 696.2¢. This includes:
    • Flattone, with generators around 693.7¢.
  • Schismic, with generators around 702¢.
  • Parapyth, with generators around 704.7¢.
  • Archy, with generators around 709.3¢. This includes:
    • Supra, with generators around 707.2¢
    • Superpyth, with generators around 710.3¢
    • Ultrapyth, with generators around 713.7¢.

Step ratio ranges

Simple step ratios

17edo and 19edo, produced using step ratios of 3:1 and 3:2 respectively, are the smallest edos that offer a greater variety of pitches than 12edo. Note that any enharmonic equivalences that 12edo has no longer hold for either 17edo or 19edo, as shown in the table below.

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 12edo (Basic, L:s = 2:1) 17edo (Hard, L:s = 3:1) 19edo (Soft, L:s = 3:2) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 0 0 1/1 (exact)
Minor 1-diadegree 1 100 1 70.6 2 126.3
Major 1-diadegree 2 200 3 211.8 3 189.5
Minor 2-diadegree 3 300 4 282.4 5 315.8
Major 2-diadegree 4 400 6 423.5 6 378.9
Perfect 3-diadegree 5 500 7 494.1 8 505.3
Augmented 3-diadegree 6 600 9 635.3 9 568.4
Diminished 4-diadegree 6 600 8 564.7 10 631.6
Perfect 4-diadegree 7 700 10 705.9 11 694.7
Minor 5-diadegree 8 800 11 776.5 13 821.1
Major 5-diadegree 9 900 13 917.6 14 884.2
Minor 6-diadegree 10 1000 14 988.2 16 1010.5
Major 6-diadegree 11 1100 16 1129.4 17 1073.7
Perfect 7-diadegree (octave) 12 1200 17 1200 19 1200 2/1 (exact)

Parasoft step ratios

Main article: Flattone

Parasoft step ratios (between 4:3 and 3:2) correspond to flattone temperaments, characterized by flattened perfect 5ths (flat of 702¢) to produce major 3rds that are flatter than 5/4 (386¢).

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 19edo (Soft, L:s = 3:2) 26edo (Supersoft, L:s = 4:3) 45edo (L:s = 7:5) 64edo (L:s = 10:7) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 0 0 0 0 1/1 (exact)
Minor 1-diadegree 2 126.3 3 138.5 5 133.3 7 131.3
Major 1-diadegree 3 189.5 4 184.6 7 186.7 10 187.5
Minor 2-diadegree 5 315.8 7 323.1 12 320 17 318.8
Major 2-diadegree 6 378.9 8 369.2 14 373.3 20 375
Perfect 3-diadegree 8 505.3 11 507.7 19 506.7 27 506.2
Augmented 3-diadegree 9 568.4 12 553.8 21 560 30 562.5
Diminished 4-diadegree 10 631.6 14 646.2 24 640 34 637.5
Perfect 4-diadegree 11 694.7 15 692.3 26 693.3 37 693.8
Minor 5-diadegree 13 821.1 18 830.8 31 826.7 44 825
Major 5-diadegree 14 884.2 19 876.9 33 880 47 881.2
Minor 6-diadegree 16 1010.5 22 1015.4 38 1013.3 54 1012.5
Major 6-diadegree 17 1073.7 23 1061.5 40 1066.7 57 1068.8
Perfect 7-diadegree (octave) 19 1200 26 1200 45 1200 64 1200 2/1 (exact)

Hyposoft step ratios

Main article: Meantone

Hyposoft step ratios (between 3:2 and 2:1) correspond to meantone temperaments, characterized by flattened perfect 5ths (flat of 702¢) to produce diatonic major 3rds that approximate 5/4 (386¢).

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 19edo (Soft, L:s = 3:2) 31edo (Semisoft, L:s = 5:3) 43edo (L:s = 7:4) 50edo (L:s = 8:5) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 0 0 0 0 1/1 (exact)
Minor 1-diadegree 2 126.3 3 116.1 4 111.6 5 120
Major 1-diadegree 3 189.5 5 193.5 7 195.3 8 192
Minor 2-diadegree 5 315.8 8 309.7 11 307 13 312
Major 2-diadegree 6 378.9 10 387.1 14 390.7 16 384
Perfect 3-diadegree 8 505.3 13 503.2 18 502.3 21 504
Augmented 3-diadegree 9 568.4 15 580.6 21 586 24 576
Diminished 4-diadegree 10 631.6 16 619.4 22 614 26 624
Perfect 4-diadegree 11 694.7 18 696.8 25 697.7 29 696
Minor 5-diadegree 13 821.1 21 812.9 29 809.3 34 816
Major 5-diadegree 14 884.2 23 890.3 32 893 37 888
Minor 6-diadegree 16 1010.5 26 1006.5 36 1004.7 42 1008
Major 6-diadegree 17 1073.7 28 1083.9 39 1088.4 45 1080
Perfect 7-diadegree (octave) 19 1200 31 1200 43 1200 50 1200 2/1 (exact)

Hypohard step ratios

Main article: Pythagorean tuning and schismatic temperament

The range of hypohard step ratios can be divided into a minihard range (between 2:1 and 5:2) and quasihard range (between 5:2 and 3:1).

Minihard step ratios

Minihard step ratios correspond to Pythagorean tuning and schismatic temperament, characterized by having a perfect 5th that is as close to just (701.96¢) as possible, resulting in a major 3rd of 81/64 (407¢).

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 41edo (L:s = 7:3) 53edo (L:s = 9:4) Approx. JI Ratios
Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 1/1 (exact)
Minor 1-diadegree 3 87.8 4 90.6
Major 1-diadegree 7 204.9 9 203.8
Minor 2-diadegree 10 292.7 13 294.3
Major 2-diadegree 14 409.8 18 407.5
Perfect 3-diadegree 17 497.6 22 498.1
Augmented 3-diadegree 21 614.6 27 611.3
Diminished 4-diadegree 20 585.4 26 588.7
Perfect 4-diadegree 24 702.4 31 701.9
Minor 5-diadegree 27 790.2 35 792.5
Major 5-diadegree 31 907.3 40 905.7
Minor 6-diadegree 34 995.1 44 996.2
Major 6-diadegree 38 1112.2 49 1109.4
Perfect 7-diadegree (octave) 41 1200 53 1200 2/1 (exact)

Quasihard step ratios

Quasihard step ratios correspond to "neogothic" or "parapyth" systems whose perfect 5th is sharper than just, resulting in major 3rds that are sharper than 81/64.

17edo is considered to be on the sharper end of the neogothic spectrum, with a major 3rd that is more discordant than flatter neogothic tunings.

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 17edo (Hard, L:s = 3:1) 29edo (Semihard, L:s = 5:2) 46edo (L:s = 8:3) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 0 0 1/1 (exact)
Minor 1-diadegree 1 70.6 2 82.8 3 78.3
Major 1-diadegree 3 211.8 5 206.9 8 208.7
Minor 2-diadegree 4 282.4 7 289.7 11 287
Major 2-diadegree 6 423.5 10 413.8 16 417.4
Perfect 3-diadegree 7 494.1 12 496.6 19 495.7
Augmented 3-diadegree 9 635.3 15 620.7 24 626.1
Diminished 4-diadegree 8 564.7 14 579.3 22 573.9
Perfect 4-diadegree 10 705.9 17 703.4 27 704.3
Minor 5-diadegree 11 776.5 19 786.2 30 782.6
Major 5-diadegree 13 917.6 22 910.3 35 913
Minor 6-diadegree 14 988.2 24 993.1 38 991.3
Major 6-diadegree 16 1129.4 27 1117.2 43 1121.7
Perfect 7-diadegree (octave) 17 1200 29 1200 46 1200 2/1 (exact)

Parahard and ultrahard step ratios

Main article: Archy

The parahard and ultrahard ranges (between 3:1 and 1:1) correspond to archy systems, with perfect 5ths that are significantly sharper than than 702¢.

  User:MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 5L 2s
Scale degree 17edo (Hard, L:s = 3:1) 22edo (Superhard, L:s = 4:1) 27edo (L:s = 5:1) 32edo (L:s = 6:1) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents Steps Cents
Perfect 0-diadegree (unison) 0 0 0 0 0 0 0 0 1/1 (exact)
Minor 1-diadegree 1 70.6 1 54.5 1 44.4 1 37.5
Major 1-diadegree 3 211.8 4 218.2 5 222.2 6 225
Minor 2-diadegree 4 282.4 5 272.7 6 266.7 7 262.5
Major 2-diadegree 6 423.5 8 436.4 10 444.4 12 450
Perfect 3-diadegree 7 494.1 9 490.9 11 488.9 13 487.5
Augmented 3-diadegree 9 635.3 12 654.5 15 666.7 18 675
Diminished 4-diadegree 8 564.7 10 545.5 12 533.3 14 525
Perfect 4-diadegree 10 705.9 13 709.1 16 711.1 19 712.5
Minor 5-diadegree 11 776.5 14 763.6 17 755.6 20 750
Major 5-diadegree 13 917.6 17 927.3 21 933.3 25 937.5
Minor 6-diadegree 14 988.2 18 981.8 22 977.8 26 975
Major 6-diadegree 16 1129.4 21 1145.5 26 1155.6 31 1162.5
Perfect 7-diadegree (octave) 17 1200 22 1200 27 1200 32 1200 2/1 (exact)

Modes

Diatonic modes have standard names from classical music theory:

Modes of 5L 2s
UDP Cyclic
order
Step
pattern
Mode names
6|0 1 LLLsLLs Lydian
5|1 5 LLsLLLs Ionian (major)
4|2 2 LLsLLsL Mixolydian
3|3 6 LsLLLsL Dorian
2|4 3 LsLLsLL Aeolian (minor)
1|5 7 sLLLsLL Phrygian
0|6 4 sLLsLLL Locrian

Each mode has the following scale degrees, reached by raising or lowering certain naturals by a chroma.

TODO: Make this into a template
Mode Scale degree (on C)
UDP Step pattern 1st 2nd 3rd 4th 5th 6th 7th 8th
6|0 LLLsLLs Perfect (C) Major (D) Major (E) Augmented (F#) Perfect (G) Major (A) Major (B) Perfect (C)
5|1 LLsLLLs Perfect (C) Major (D) Major (E) Perfect (F) Perfect (G) Major (A) Major (B) Perfect (C)
4|2 LLsLLsL Perfect (C) Major (D) Major (E) Perfect (F) Perfect (G) Major (A) Minor (Bb) Perfect (C)
3|3 LsLLLsL Perfect (C) Major (D) Minor (Eb) Perfect (F) Perfect (G) Major (A) Minor (Bb) Perfect (C)
2|4 LsLLsLL Perfect (C) Major (D) Minor (Eb) Perfect (F) Perfect (G) Minor (Ab) Minor (Bb) Perfect (C)
1|5 sLLLsLL Perfect (C) Minor (Db) Minor (Eb) Perfect (F) Perfect (G) Minor (Ab) Minor (Bb) Perfect (C)
0|6 sLLsLLL Perfect (C) Minor (Db) Minor (Eb) Perfect (F) Diminished (Gb) Minor (Ab) Minor (Bb) Perfect (C)

Scales

Subset and superset scales

5L 2s has a parent scale of 2L 3s, meaning 5L 2s contains 2L 3s as a subset. 5L 2s also has two child scales that both contain 5L 2s as a subset: either 7L 5s (if the step ratio is less than 2:1) or 5L 7s (if the step ratio is greater than 2:1). A step ratio exactly 2:1 will produce 12edo, an equalized form of 5L 7s and 7L 5s.

MODMOS scales and muddles

and 5L 2s Muddles

Scala files

Tuning spectrum

A spectrum of step ratios can be produced by starting with the ratios 1:1 and 1:0 and repeatedly finding the mediants between adjacent ratios. The first three iterations are shown below.

Ratios
1/1
2/1
1/0
Ratios
1/1
3/2
2/1
3/1
1/0
Ratios
1/1
4/3
3/2
5/3
2/1
5/2
3/1
4/1
1/0

This process can be repeated to produce a finer, larger continuum of step ratios as shown below, with each ratio producing a different edo.Template:Scale tree

See also