50edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Jkarimak (talk | contribs)
Intervals: Removed pions column
Line 14: Line 14:
! | Degrees of 50edo
! | Degrees of 50edo
! | Cents value
! | Cents value
!pions
!7mus
!7mus
! | Ratios*
! | Ratios*
! | Generator for*
! | Generator for*
|-
|-
| colspan="4"| 0
| 0
|0
|0
| | 1/1
| | 1/1
| |  
| |  
Line 25: Line 26:
| | 1
| | 1
| | 24
| | 24
|25.44
|30.72 (1E.B8<sub>16</sub>)
|30.72 (1E.B8<sub>16</sub>)
| | 45/44, 49/48, 56/55, 65/64, 66/65, 78/77, 91/90, 99/98, 100/99, 121/120, 169/168
| | 45/44, 49/48, 56/55, 65/64, 66/65, 78/77, 91/90, 99/98, 100/99, 121/120, 169/168
Line 32: Line 32:
| | 2
| | 2
| | 48
| | 48
|50.88
|61.44 (3D.71<sub>16</sub>)
|61.44 (3D.71<sub>16</sub>)
| | 33/32, 36/35, 50/49, 55/54, 64/63
| | 33/32, 36/35, 50/49, 55/54, 64/63
Line 39: Line 38:
| | 3
| | 3
| | 72
| | 72
|76.32
|92.16 (5C.29<sub>16</sub>)
|92.16 (5C.29<sub>16</sub>)
| | 21/20, 25/24, 26/25, 27/26, 28/27
| | 21/20, 25/24, 26/25, 27/26, 28/27
Line 46: Line 44:
| | 4
| | 4
| | 96
| | 96
|101.76
|122.88 (7A.E1<sub>16</sub>)
|122.88 (7A.E1<sub>16</sub>)
| | 22/21
| | 22/21
Line 53: Line 50:
| | 5
| | 5
| | 120
| | 120
|127.2
|153.6 (99.9A<sub>16</sub>)
|153.6 (99.9A<sub>16</sub>)
| | 16/15, 15/14, 14/13
| | 16/15, 15/14, 14/13
Line 60: Line 56:
| | 6
| | 6
| | 144
| | 144
|152.64
|184.32 (B8.52<sub>16</sub>)
|184.32 (B8.52<sub>16</sub>)
| | 13/12, 12/11
| | 13/12, 12/11
Line 67: Line 62:
| | 7
| | 7
| | 168
| | 168
|178.08
|215.04 (D7.0A<sub>16</sub>)
|215.04 (D7.0A<sub>16</sub>)
| | 11/10
| | 11/10
Line 74: Line 68:
| | 8
| | 8
| | 192
| | 192
|203.52
|245.76 (F5.C3<sub>16</sub>)
|245.76 (F5.C3<sub>16</sub>)
| | 9/8, 10/9
| | 9/8, 10/9
Line 81: Line 74:
| | 9
| | 9
| | 216
| | 216
|228.96
|276.48 (114.7B<sub>16</sub>)
|276.48 (114.7B<sub>16</sub>)
| | 25/22
| | 25/22
Line 88: Line 80:
| | 10
| | 10
| | 240
| | 240
|254.4
|307.2 (133.33<sub>16</sub>)
|307.2 (133.33<sub>16</sub>)
| | 8/7, 15/13
| | 8/7, 15/13
Line 95: Line 86:
| | 11
| | 11
| | 264
| | 264
|279.88
|337.92 (151.EB8<sub>16</sub>)
|337.92 (151.EB8<sub>16</sub>)
| | 7/6
| | 7/6
Line 102: Line 92:
| | 12
| | 12
| | 288
| | 288
|305.28
|368.64 (170.A4<sub>16</sub>)
|368.64 (170.A4<sub>16</sub>)
| | 13/11
| | 13/11
Line 109: Line 98:
| | 13
| | 13
| | 312
| | 312
|330.72
|399.36 (18F.5C<sub>16</sub>)
|399.36 (18F.5C<sub>16</sub>)
| | 6/5
| | 6/5
Line 116: Line 104:
| | 14
| | 14
| | 336
| | 336
|356.16
|430.08 (1AE.148<sub>16</sub>)
|430.08 (1AE.148<sub>16</sub>)
| | 27/22, 39/32, 40/33, 49/40
| | 27/22, 39/32, 40/33, 49/40
Line 123: Line 110:
| | 15
| | 15
| | 360
| | 360
|381.6
|460.8 (1CC.CD<sub>16</sub>)
|460.8 (1CC.CD<sub>16</sub>)
| | 16/13, 11/9
| | 16/13, 11/9
Line 130: Line 116:
| | 16
| | 16
| | 384
| | 384
|407.04
|491.52 (1EB.85<sub>16</sub>)
|491.52 (1EB.85<sub>16</sub>)
| | 5/4
| | 5/4
Line 137: Line 122:
| | 17
| | 17
| | 408
| | 408
|432.48
|522.24 (20A.4<sub>16</sub>)
|522.24 (20A.4<sub>16</sub>)
| | 14/11
| | 14/11
Line 144: Line 128:
| | 18
| | 18
| | 432
| | 432
|457.92
|552.96 (228.F6<sub>16</sub>)
|552.96 (228.F6<sub>16</sub>)
| | 9/7
| | 9/7
Line 151: Line 134:
| | 19
| | 19
| | 456
| | 456
|483.36
|583.68 (247.AE<sub>16</sub>)
|583.68 (247.AE<sub>16</sub>)
| | 13/10
| | 13/10
Line 158: Line 140:
| | 20
| | 20
| | 480
| | 480
|508.8
|614.4 (266.66<sub>16</sub>)
|614.4 (266.66<sub>16</sub>)
| | 33/25, 55/42, 64/49
| | 33/25, 55/42, 64/49
Line 165: Line 146:
| | 21
| | 21
| | 504
| | 504
|534.24
|645.12 (285.1F<sub>16</sub>)
|645.12 (285.1F<sub>16</sub>)
| | 4/3
| | 4/3
Line 172: Line 152:
| | 22
| | 22
| | 528
| | 528
|559.68
|675.84 (2A3.D7<sub>16</sub>)
|675.84 (2A3.D7<sub>16</sub>)
| | 15/11
| | 15/11
Line 179: Line 158:
| | 23
| | 23
| | 552
| | 552
|585.12
|706.56 (2C2.8F<sub>16</sub>)
|706.56 (2C2.8F<sub>16</sub>)
| | 11/8, 18/13
| | 11/8, 18/13
Line 186: Line 164:
| | 24
| | 24
| | 576
| | 576
|610.56
|737.28 (2E1.48<sub>16</sub>)
|737.28 (2E1.48<sub>16</sub>)
| | 7/5
| | 7/5
Line 193: Line 170:
| | 25
| | 25
| | 600
| | 600
|636
|768 (300<sub>16</sub>)
|768 (300<sub>16</sub>)
| | 63/44, 88/63, 78/55, 55/39
| | 63/44, 88/63, 78/55, 55/39
Line 200: Line 176:
| | 26
| | 26
| | 624
| | 624
|661.44
|798.72 (31E.B8<sub>16</sub>)
|798.72 (31E.B8<sub>16</sub>)
| | 10/7
| | 10/7
Line 207: Line 182:
| | 27
| | 27
| | 648
| | 648
|686.88
|829.44 (33D.71<sub>16</sub>)
|829.44 (33D.71<sub>16</sub>)
| | 16/11, 13/9
| | 16/11, 13/9
Line 214: Line 188:
| | 28
| | 28
| | 672
| | 672
|712.32
|860.16 (35C.29<sub>16</sub>)
|860.16 (35C.29<sub>16</sub>)
| | 22/15
| | 22/15
Line 221: Line 194:
| | 29
| | 29
| | 696
| | 696
|737.76
|900.88 (37A.E1<sub>16</sub>)
|900.88 (37A.E1<sub>16</sub>)
| | 3/2
| | 3/2
Line 228: Line 200:
| | 30
| | 30
| | 720
| | 720
|763.2
|921.6 (399.9A<sub>16</sub>)
|921.6 (399.9A<sub>16</sub>)
| | 50/33, 84/55, 49/32
| | 50/33, 84/55, 49/32
Line 235: Line 206:
| | 31
| | 31
| | 744
| | 744
|788.64
|952.32 (3B8.52<sub>16</sub>)
|952.32 (3B8.52<sub>16</sub>)
| | 20/13
| | 20/13
Line 242: Line 212:
| | 32
| | 32
| | 768
| | 768
|814.08
|983.04 (3D7.0A<sub>16</sub>)
|983.04 (3D7.0A<sub>16</sub>)
| | 14/9
| | 14/9
Line 249: Line 218:
| | 33
| | 33
| | 792
| | 792
|239.52
|1013.76 (3F5.C3<sub>16</sub>)
|1013.76 (3F5.C3<sub>16</sub>)
| | 11/7
| | 11/7
Line 256: Line 224:
| | 34
| | 34
| | 816
| | 816
|864.96
|1044.48 (414.7B<sub>16</sub>)
|1044.48 (414.7B<sub>16</sub>)
| | 8/5
| | 8/5
Line 263: Line 230:
| | 35
| | 35
| | 840
| | 840
|890.4
|1095.2 (433.33<sub>16</sub>)
|1095.2 (433.33<sub>16</sub>)
| | 13/8, 18/11
| | 13/8, 18/11
Line 270: Line 236:
| | 36
| | 36
| | 864
| | 864
|915.84
|1105.92 (451.EB8<sub>16</sub>)
|1105.92 (451.EB8<sub>16</sub>)
| | 44/27, 64/39, 33/20, 80/49
| | 44/27, 64/39, 33/20, 80/49
Line 277: Line 242:
| | 37
| | 37
| | 888
| | 888
|941.28
|1136.64 (470.A4<sub>16</sub>
|1136.64 (470.A4<sub>16</sub>
| | 5/3
| | 5/3
Line 284: Line 248:
| | 38
| | 38
| | 912
| | 912
|966.72
|1167.36 (48F.5C<sub>16</sub>)
|1167.36 (48F.5C<sub>16</sub>)
| | 22/13
| | 22/13
Line 291: Line 254:
| | 39
| | 39
| | 936
| | 936
|992.16
|1198.08 (4AE.148<sub>16</sub>)
|1198.08 (4AE.148<sub>16</sub>)
| | 12/7
| | 12/7
Line 298: Line 260:
| | 40
| | 40
| | 960
| | 960
|1017.6
|1228.8 (4CC.CD<sub>16</sub>)
|1228.8 (4CC.CD<sub>16</sub>)
| | 7/4
| | 7/4
Line 305: Line 266:
| | 41
| | 41
| | 984
| | 984
|1043.04
|1261.52 (4EB.85<sub>16</sub>)
|1261.52 (4EB.85<sub>16</sub>)
| | 44/25
| | 44/25
Line 312: Line 272:
| | 42
| | 42
| | 1008
| | 1008
|1068.48
|1290.24 (50A.4<sub>16</sub>)
|1290.24 (50A.4<sub>16</sub>)
| | 16/9, 9/5
| | 16/9, 9/5
Line 319: Line 278:
| | 43
| | 43
| | 1032
| | 1032
|1093.92
|1320.96 (528.F6<sub>16</sub>)
|1320.96 (528.F6<sub>16</sub>)
| | 20/11
| | 20/11
Line 326: Line 284:
| | 44
| | 44
| | 1056
| | 1056
|1119.36
|1351.68 (547.AE<sub>16</sub>)
|1351.68 (547.AE<sub>16</sub>)
| | 24/13, 11/6
| | 24/13, 11/6
Line 333: Line 290:
| | 45
| | 45
| | 1080
| | 1080
|1144.8
|1382.4 (566.66<sub>16</sub>)
|1382.4 (566.66<sub>16</sub>)
| | 15/8, 28/15, 13/7
| | 15/8, 28/15, 13/7
Line 340: Line 296:
| | 46
| | 46
| | 1104
| | 1104
|1170.24
|1413.12 (585.1F<sub>16</sub>)
|1413.12 (585.1F<sub>16</sub>)
| | 21/11
| | 21/11
Line 347: Line 302:
| | 47
| | 47
| | 1128
| | 1128
|1195.68
|1443.84 (5A3.D7<sub>16</sub>)
|1443.84 (5A3.D7<sub>16</sub>)
| | 40/21, 48/25, 25/13, 52/27, 27/14
| | 40/21, 48/25, 25/13, 52/27, 27/14
Line 354: Line 308:
| | 48
| | 48
| | 1152
| | 1152
|1221.12
|1474.56 (5C2.8F<sub>16</sub>)
|1474.56 (5C2.8F<sub>16</sub>)
| | 64/33, 35/18, 49/25, 108/55, 63/32
| | 64/33, 35/18, 49/25, 108/55, 63/32
Line 361: Line 314:
| | 49
| | 49
| | 1176
| | 1176
|1246.56
|1505.28 (5E1.48<sub>16</sub>)
|1505.28 (5E1.48<sub>16</sub>)
| | 88/45, 96/49, 55/28, 128/65, 65/33, 77/39, 180/91, 196/99, 99/50, 240/121, 336/169
| | 88/45, 96/49, 55/28, 128/65, 65/33, 77/39, 180/91, 196/99, 99/50, 240/121, 336/169
Line 368: Line 320:
|50
|50
|1200
|1200
|1272
|1536 (600<sub>16</sub>)
|1536 (600<sub>16</sub>)
|2/1
|2/1

Revision as of 13:27, 12 December 2019


50edo divides the octave into 50 equal parts of precisely 24 cents each. In the 5-limit, it tempers out 81/80, making it a meantone system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts – 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the least squares tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While 31edo extends meantone with a 7/4 which is nearly pure, 50 has a flat 7/4 but both 11/8 and 13/8 are nearly pure.

50 tempers out 126/125, 225/224 and 3136/3125 in the 7-limit, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the 11-limit and 105/104, 144/143 and 196/195 in the 13-limit, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&50 temperament (Coblack), and provides the optimal patent val for 11 and 13 limit bimeantone. It is also the unique equal temperament tempering out both 81/80 and the vishnuzma, |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.

Relations

The 50edo system is related to 7edo, 12edo, 19edo, 31edo as the next approximation to the "Golden Tone System" (Das Goldene Tonsystem) of Thorvald Kornerup (and similarly as the next step from 31edo in Joseph Yasser's "A Theory of Evolving Tonality").

Intervals

Degrees of 50edo Cents value 7mus Ratios* Generator for*
0 0 0 1/1
1 24 30.72 (1E.B816) 45/44, 49/48, 56/55, 65/64, 66/65, 78/77, 91/90, 99/98, 100/99, 121/120, 169/168 Sengagen
2 48 61.44 (3D.7116) 33/32, 36/35, 50/49, 55/54, 64/63
3 72 92.16 (5C.2916) 21/20, 25/24, 26/25, 27/26, 28/27 Vishnu (2/oct), Coblack (5/oct)
4 96 122.88 (7A.E116) 22/21 Injera (50d val, 2/oct)
5 120 153.6 (99.9A16) 16/15, 15/14, 14/13
6 144 184.32 (B8.5216) 13/12, 12/11
7 168 215.04 (D7.0A16) 11/10
8 192 245.76 (F5.C316) 9/8, 10/9
9 216 276.48 (114.7B16) 25/22 Tremka, Machine (50b val)
10 240 307.2 (133.3316) 8/7, 15/13
11 264 337.92 (151.EB816) 7/6 Septimin (13-limit)
12 288 368.64 (170.A416) 13/11
13 312 399.36 (18F.5C16) 6/5
14 336 430.08 (1AE.14816) 27/22, 39/32, 40/33, 49/40
15 360 460.8 (1CC.CD16) 16/13, 11/9
16 384 491.52 (1EB.8516) 5/4 Wizard (2/oct)
17 408 522.24 (20A.416) 14/11 Ditonic
18 432 552.96 (228.F616) 9/7 Hedgehog (50cc val, 2/oct)
19 456 583.68 (247.AE16) 13/10 Bisemidim (2/oct)
20 480 614.4 (266.6616) 33/25, 55/42, 64/49
21 504 645.12 (285.1F16) 4/3 Meantone/Meanpop
22 528 675.84 (2A3.D716) 15/11
23 552 706.56 (2C2.8F16) 11/8, 18/13 Barton, Emka
24 576 737.28 (2E1.4816) 7/5
25 600 768 (30016) 63/44, 88/63, 78/55, 55/39
26 624 798.72 (31E.B816) 10/7
27 648 829.44 (33D.7116) 16/11, 13/9
28 672 860.16 (35C.2916) 22/15
29 696 900.88 (37A.E116) 3/2
30 720 921.6 (399.9A16) 50/33, 84/55, 49/32
31 744 952.32 (3B8.5216) 20/13
32 768 983.04 (3D7.0A16) 14/9
33 792 1013.76 (3F5.C316) 11/7
34 816 1044.48 (414.7B16) 8/5
35 840 1095.2 (433.3316) 13/8, 18/11
36 864 1105.92 (451.EB816) 44/27, 64/39, 33/20, 80/49
37 888 1136.64 (470.A416 5/3
38 912 1167.36 (48F.5C16) 22/13
39 936 1198.08 (4AE.14816) 12/7
40 960 1228.8 (4CC.CD16) 7/4
41 984 1261.52 (4EB.8516) 44/25
42 1008 1290.24 (50A.416) 16/9, 9/5
43 1032 1320.96 (528.F616) 20/11
44 1056 1351.68 (547.AE16) 24/13, 11/6
45 1080 1382.4 (566.6616) 15/8, 28/15, 13/7
46 1104 1413.12 (585.1F16) 21/11
47 1128 1443.84 (5A3.D716) 40/21, 48/25, 25/13, 52/27, 27/14
48 1152 1474.56 (5C2.8F16) 64/33, 35/18, 49/25, 108/55, 63/32
49 1176 1505.28 (5E1.4816) 88/45, 96/49, 55/28, 128/65, 65/33, 77/39, 180/91, 196/99, 99/50, 240/121, 336/169
50 1200 1536 (60016) 2/1
  • Using the 13-limit patent val, except as noted.

Selected just intervals by error

The following table shows how some prominent just intervals are represented in 50edo (ordered by absolute error).

Best direct mapping, even if inconsistent

Interval, complement Error (abs., in cents)
16/13, 13/8 0.528
15/14, 28/15 0.557
11/8, 16/11 0.682
13/11, 22/13 1.210
13/10, 20/13 1.786
5/4, 8/5 2.314
7/6, 12/7 2.871
11/10, 20/11 2.996
9/7, 14/9 3.084
6/5, 5/3 3.641
13/12, 24/13 5.427
4/3, 3/2 5.955
7/5, 10/7 6.512
12/11, 11/6 6.637
15/13, 26/15 7.741
16/15, 15/8 8.269
14/13, 13/7 8.298
8/7, 7/4 8.826
15/11, 22/15 8.951
14/11, 11/7 9.508
10/9, 9/5 9.596
18/13, 13/9 11.382
11/9, 18/11 11.408
9/8, 16/9 11.910

Patent val mapping

Interval, complement Error (abs., in cents)
16/13, 13/8 0.528
15/14, 28/15 0.557
11/8, 16/11 0.682
13/11, 22/13 1.210
13/10, 20/13 1.786
5/4, 8/5 2.314
7/6, 12/7 2.871
11/10, 20/11 2.996
9/7, 14/9 3.084
6/5, 5/3 3.641
13/12, 24/13 5.427
4/3, 3/2 5.955
7/5, 10/7 6.512
12/11, 11/6 6.637
15/13, 26/15 7.741
16/15, 15/8 8.269
14/13, 13/7 8.298
8/7, 7/4 8.826
15/11, 22/15 8.951
14/11, 11/7 9.508
10/9, 9/5 9.596
18/13, 13/9 11.382
9/8, 16/9 11.910
11/9, 18/11 12.592

Commas

50 EDO tempers out the following commas. (Note: This assumes the val < 50 79 116 140 173 185 204 212 226 |, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.

Monzo Cents Ratio Name 1 Name 2
| -4 4 -1 > 21.51 81/80 Syntonic comma Didymus comma
| -27 -2 13 > 18.17 Ditonma
| 23 6 -14 > 3.34 Vishnu comma
| 1 2 -3 1 > 13.79 126/125 Starling comma Small septimal comma
| -5 2 2 -1 > 7.71 225/224 Septimal kleisma Marvel comma
| 6 0 -5 2 > 6.08 3136/3125 Hemimean Middle second comma
| -6 -8 2 5 > 1.12 Wizma
|-11 2 7 -3 > 1.63 Meter
| 11 -10 -10 10 > 5.57 Linus
|-13 10 0 -1 > 50.72 59049/57344 Harrison's comma
| 2 3 1 -2 -1 > 3.21 540/539 Swets' comma Swetisma
| -3 4 -2 -2 2 > 0.18 9801/9800 Kalisma Gauss' comma
| 5 -1 3 0 -3 > 3.03 4000/3993 Wizardharry Undecimal schisma
| -7 -1 1 1 1 > 4.50 385/384 Keenanisma Undecimal kleisma
| -1 0 1 2 -2 > 21.33 245/242 Cassacot
| 2 -1 0 1 -2 1 > 4.76 364/363 Gentle comma
| 2 -1 -1 2 0 -1 > 8.86 196/195 Mynucuma
| 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma
| 3 0 2 0 1 -3 > 2.36 2200/2197 Petrma Parizek comma
| -3 1 1 1 0 -1 > 16.57 105/104 Animist comma Small tridecimal comma
| 4 2 0 0 -1 -1 > 12.06 144/143 Grossma
| 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 Triaphonisma

Music

Twinkle canon – 50 edo by Claudi Meneghin

Fantasia Catalana by Claudi Meneghin

Fugue on the Dragnet theme by Claudi Meneghin

the late little xmas album by Cam Taylor

Harpsichord meantone improvisation 1 in 50EDO by Cam Taylor

Long improvisation 2 in 50EDO by Cam Taylor

Chord sequence for Difference tones in 50EDO by Cam Taylor

Enharmonic Modulations in 50EDO by Cam Taylor

Harmonic Clusters on 50EDO Harpsichord by Cam Taylor

Fragment in Fifty by Cam Taylor

Additional reading

Robert Smith's book online

More information about Robert Smith's temperament

50EDO Theory - Intervals, Chords and Scales in 50EDO by Cam Taylor

iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor