Template:MOSes by EDO: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 9: Line 9:
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was changing an altered module.
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was changing an altered module.


Test usage (not working yet, trying to troubleshoot as you’re reading this):
= Example of usage =


== 12edo ==
== 12edo ==

Revision as of 04:09, 22 September 2024

Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was changing an altered module.

Example of usage

12edo

These are all moment of symmetry scales in 12edo.
Single-period MOS scales

Generators 7\12 and 5\12
Step visualization MOS (name) Step sizes Step ratio
├──────┼────┤ 1L 1s 7, 5 7:5
├─┼────┼────┤ 2L 1s 5, 2 5:2
├─┼─┼──┼─┼──┤ 2L 3s 3, 2 3:2
├─┼─┼─┼┼─┼─┼┤ 5L 2s (diatonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1
Generators 8\12 and 4\12
Step visualization MOS (name) Step sizes Step ratio
├───────┼───┤ 1L 1s 8, 4 2:1
├───┼───┼───┤ 3edo 4, 4 1:1
Generators 9\12 and 3\12
Step visualization MOS (name) Step sizes Step ratio
├────────┼──┤ 1L 1s 9, 3 3:1
├─────┼──┼──┤ 1L 2s 6, 3 2:1
├──┼──┼──┼──┤ 4edo 3, 3 1:1
Generators 10\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├─────────┼─┤ 1L 1s 10, 2 5:1
├───────┼─┼─┤ 1L 2s 8, 2 4:1
├─────┼─┼─┼─┤ 1L 3s 6, 2 3:1
├───┼─┼─┼─┼─┤ 1L 4s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 11\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──────────┼┤ 1L 1s 11, 1 11:1
├─────────┼┼┤ 1L 2s 10, 1 10:1
├────────┼┼┼┤ 1L 3s 9, 1 9:1
├───────┼┼┼┼┤ 1L 4s 8, 1 8:1
├──────┼┼┼┼┼┤ 1L 5s (antimachinoid) 7, 1 7:1
├─────┼┼┼┼┼┼┤ 1L 6s (onyx) 6, 1 6:1
├────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


Multi-period MOS scales
2 periods

Generators 4\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├───┼─┼───┼─┤ 2L 2s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 5\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├────┼┼────┼┤ 2L 2s 5, 1 5:1
├───┼┼┼───┼┼┤ 2L 4s (malic) 4, 1 4:1
├──┼┼┼┼──┼┼┼┤ 2L 6s (subaric) 3, 1 3:1
├─┼┼┼┼┼─┼┼┼┼┤ 2L 8s (jaric) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


3 periods

Generators 3\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──┼┼──┼┼──┼┤ 3L 3s (triwood) 3, 1 3:1
├─┼┼┼─┼┼┼─┼┼┤ 3L 6s (tcherepnin) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


4 periods

Generators 2\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├─┼┼─┼┼─┼┼─┼┤ 4L 4s (tetrawood) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


13edo

These are all moment of symmetry scales in 13edo.
Single-period MOS scales

Generators 7\13 and 6\13
Step visualization MOS (name) Step sizes Step ratio
├──────┼─────┤ 1L 1s 7, 6 7:6
├┼─────┼─────┤ 2L 1s 6, 1 6:1
├┼┼────┼┼────┤ 2L 3s 5, 1 5:1
├┼┼┼───┼┼┼───┤ 2L 5s (antidiatonic) 4, 1 4:1
├┼┼┼┼──┼┼┼┼──┤ 2L 7s (balzano) 3, 1 3:1
├┼┼┼┼┼─┼┼┼┼┼─┤ 2L 9s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 8\13 and 5\13
Step visualization MOS (name) Step sizes Step ratio
├───────┼────┤ 1L 1s 8, 5 8:5
├──┼────┼────┤ 2L 1s 5, 3 5:3
├──┼──┼─┼──┼─┤ 3L 2s 3, 2 3:2
├┼─┼┼─┼─┼┼─┼─┤ 5L 3s (oneirotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 9\13 and 4\13
Step visualization MOS (name) Step sizes Step ratio
├────────┼───┤ 1L 1s 9, 4 9:4
├────┼───┼───┤ 1L 2s 5, 4 5:4
├┼───┼───┼───┤ 3L 1s 4, 1 4:1
├┼┼──┼┼──┼┼──┤ 3L 4s (mosh) 3, 1 3:1
├┼┼┼─┼┼┼─┼┼┼─┤ 3L 7s (sephiroid) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 10\13 and 3\13
Step visualization MOS (name) Step sizes Step ratio
├─────────┼──┤ 1L 1s 10, 3 10:3
├──────┼──┼──┤ 1L 2s 7, 3 7:3
├───┼──┼──┼──┤ 1L 3s 4, 3 4:3
├┼──┼──┼──┼──┤ 4L 1s 3, 1 3:1
├┼┼─┼┼─┼┼─┼┼─┤ 4L 5s (gramitonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 11\13 and 2\13
Step visualization MOS (name) Step sizes Step ratio
├──────────┼─┤ 1L 1s 11, 2 11:2
├────────┼─┼─┤ 1L 2s 9, 2 9:2
├──────┼─┼─┼─┤ 1L 3s 7, 2 7:2
├────┼─┼─┼─┼─┤ 1L 4s 5, 2 5:2
├──┼─┼─┼─┼─┼─┤ 1L 5s (antimachinoid) 3, 2 3:2
├┼─┼─┼─┼─┼─┼─┤ 6L 1s (archaeotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 12\13 and 1\13
Step visualization MOS (name) Step sizes Step ratio
├───────────┼┤ 1L 1s 12, 1 12:1
├──────────┼┼┤ 1L 2s 11, 1 11:1
├─────────┼┼┼┤ 1L 3s 10, 1 10:1
├────────┼┼┼┼┤ 1L 4s 9, 1 9:1
├───────┼┼┼┼┼┤ 1L 5s (antimachinoid) 8, 1 8:1
├──────┼┼┼┼┼┼┤ 1L 6s (onyx) 7, 1 7:1
├─────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 6, 1 6:1
├────┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┼┤ 1L 11s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1