217edo: Difference between revisions
Template the intro and odd-limit approximation table; various cleanup |
Cleanup |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
217edo is a strong [[19-limit]] system, the smallest | 217edo is a strong [[19-limit]] system, the smallest [[consistency|distinctly consistent]] in the [[19-odd-limit]] and consistent to the [[21-odd-limit]]. It shares the same [[5/1|5th]] and [[7/1|7th]] [[harmonic]]s with [[31edo]] (217 = 7 × 31), as well as the [[11/9]] interval (supporting the [[31-comma temperaments #Birds|birds temperament]]). However, compared to 31edo, its [[patent val]] differ on the mappings for [[3/1|3]], [[11/1|11]], [[13/1|13]], [[17/1|17]] and [[19/1|19]] – in fact, this edo has a very accurate 13th harmonic, as well as the [[19/15]] interval. | ||
The equal temperament tempers out the [[parakleisma]], {{monzo| 8 14 -13 }}, and the [[escapade comma]], {{monzo| 32 -7 -9 }} in the 5-limit; [[3136/3125]], [[4375/4374]], [[10976/10935]] and 823543/819200 in the 7-limit; [[441/440]], [[4000/3993]], 5632/5625, and [[16384/16335]] in the 11-limit; [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]], [[2080/2079]] and [[4096/4095]] in the 13-limit; 595/594, [[833/832]], [[936/935]], 1156/1155, [[1225/1224]], [[1701/1700]] in the 17-limit; 343/342, 476/475, 969/968, [[1216/1215]], [[1445/1444]], [[1521/1520]] and 1540/1539 in the 19-limit. It allows [[ | The equal temperament [[tempering out|tempers out]] the [[parakleisma]], {{monzo| 8 14 -13 }}, and the [[escapade comma]], {{monzo| 32 -7 -9 }} in the 5-limit; [[3136/3125]], [[4375/4374]], [[10976/10935]] and [[823543/819200]] in the 7-limit; [[441/440]], [[4000/3993]], [[5632/5625]], and [[16384/16335]] in the 11-limit; [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]], [[2080/2079]] and [[4096/4095]] in the 13-limit; [[595/594]], [[833/832]], [[936/935]], [[1156/1155]], [[1225/1224]], [[1701/1700]] in the 17-limit; [[343/342]], [[476/475]], [[969/968]], [[1216/1215]], [[1445/1444]], [[1521/1520]] and [[1540/1539]] in the 19-limit. It allows [[minor minthmic chords]], [[werckismic chords]], and [[sinbadmic chords]] in the 13-odd-limit, in addition to [[island chords]] and [[nicolic chords]] in the 15-odd-limit. It provides the [[optimal patent val]] for the 11- and 13-limit [[arch]] and the 11- and 13-limit [[cotoneum]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|217|columns=11}} | {{Harmonics in equal|217|columns=11}} | ||
== JI | == Approximation to JI == | ||
=== Selected just intervals === | === Selected just intervals === | ||
The following table shows how [[23-odd-limit|23-odd-limit intervals]] are represented in 217edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | The following table shows how [[23-odd-limit|23-odd-limit intervals]] are represented in 217edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | ||
Line 28: | Line 28: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 344 -217 }} | | {{monzo| 344 -217 }} | ||
| | | {{mapping| 217 344 }} | ||
| -0.110 | | -0.110 | ||
| 0.1101 | | 0.1101 | ||
Line 35: | Line 35: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| 8 14 -13 }}, {{monzo| 32 -7 -9 }} | | {{monzo| 8 14 -13 }}, {{monzo| 32 -7 -9 }} | ||
| | | {{mapping| 217 344 504 }} | ||
| -0.186 | | -0.186 | ||
| 0.1398 | | 0.1398 | ||
Line 41: | Line 41: | ||
|- | |- | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 3136/3125, 4375/4374, | | 3136/3125, 4375/4374, 823543/819200 | ||
| | | {{mapping| 217 344 504 609 }} | ||
| -0.043 | | -0.043 | ||
| 0.2757 | | 0.2757 | ||
Line 48: | Line 48: | ||
|- | |- | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 441/440, 3136/3125, | | 441/440, 3136/3125, 4000/3993, 4375/4374 | ||
| | | {{mapping| 217 344 504 609 751 }} | ||
| -0.131 | | -0.131 | ||
| 0.3034 | | 0.3034 | ||
Line 55: | Line 55: | ||
|- | |- | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 364/363, 441/440, 676/675, | | 364/363, 441/440, 676/675, 3136/3125, 4375/4374 | ||
| | | {{mapping| 217 344 504 609 751 803 }} | ||
| -0.111 | | -0.111 | ||
| 0.2808 | | 0.2808 | ||
Line 62: | Line 62: | ||
|- | |- | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 364/363, 441/440, 595/594, | | 364/363, 441/440, 595/594, 676/675, 1156/1155, 3136/3125 | ||
| | | {{mapping| 217 344 504 609 751 803 887 }} | ||
| -0.099 | | -0.099 | ||
| 0.2616 | | 0.2616 | ||
Line 69: | Line 69: | ||
|- | |- | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 343/342, 364/363, 441/440, | | 343/342, 364/363, 441/440, 476/475, 595/594, 676/675, 1216/1215 | ||
| | | {{mapping| 217 344 504 609 751 803 887 922 }} | ||
| -0.119 | | -0.119 | ||
| 0.2504 | | 0.2504 | ||
Line 80: | Line 80: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>Ratio | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 163: | Line 163: | ||
| [[Birds]] | | [[Birds]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
== Scales == | == Scales == | ||
Line 171: | Line 172: | ||
* [[Cotoneum29]] | * [[Cotoneum29]] | ||
* [[Cotoneum41]] | * [[Cotoneum41]] | ||
[[Category:Arch]] | [[Category:Arch]] | ||
[[Category:Birds]] | [[Category:Birds]] | ||
[[Category:Cotoneum]] | [[Category:Cotoneum]] |
Revision as of 08:16, 3 April 2024
← 216edo | 217edo | 218edo → |
Theory
217edo is a strong 19-limit system, the smallest distinctly consistent in the 19-odd-limit and consistent to the 21-odd-limit. It shares the same 5th and 7th harmonics with 31edo (217 = 7 × 31), as well as the 11/9 interval (supporting the birds temperament). However, compared to 31edo, its patent val differ on the mappings for 3, 11, 13, 17 and 19 – in fact, this edo has a very accurate 13th harmonic, as well as the 19/15 interval.
The equal temperament tempers out the parakleisma, [8 14 -13⟩, and the escapade comma, [32 -7 -9⟩ in the 5-limit; 3136/3125, 4375/4374, 10976/10935 and 823543/819200 in the 7-limit; 441/440, 4000/3993, 5632/5625, and 16384/16335 in the 11-limit; 364/363, 676/675, 1001/1000, 1575/1573, 2080/2079 and 4096/4095 in the 13-limit; 595/594, 833/832, 936/935, 1156/1155, 1225/1224, 1701/1700 in the 17-limit; 343/342, 476/475, 969/968, 1216/1215, 1445/1444, 1521/1520 and 1540/1539 in the 19-limit. It allows minor minthmic chords, werckismic chords, and sinbadmic chords in the 13-odd-limit, in addition to island chords and nicolic chords in the 15-odd-limit. It provides the optimal patent val for the 11- and 13-limit arch and the 11- and 13-limit cotoneum.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.35 | +0.78 | -1.08 | +1.68 | +0.03 | +0.11 | +1.10 | +2.14 | -1.01 | -0.34 |
Relative (%) | +0.0 | +6.3 | +14.2 | -19.6 | +30.3 | +0.5 | +2.1 | +20.0 | +38.7 | -18.2 | -6.1 | |
Steps (reduced) |
217 (0) |
344 (127) |
504 (70) |
609 (175) |
751 (100) |
803 (152) |
887 (19) |
922 (54) |
982 (114) |
1054 (186) |
1075 (207) |
Approximation to JI
Selected just intervals
The following table shows how 23-odd-limit intervals are represented in 217edo. Prime harmonics are in bold; inconsistent intervals are in italic. The following tables show how 23-odd-limit intervals are represented in 217edo. Prime harmonics are in bold; inconsistent intervals are in italics.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
13/8, 16/13 | 0.025 | 0.5 |
19/15, 30/19 | 0.028 | 0.5 |
9/5, 10/9 | 0.085 | 1.5 |
17/13, 26/17 | 0.088 | 1.6 |
17/16, 32/17 | 0.114 | 2.1 |
17/12, 24/17 | 0.235 | 4.3 |
19/10, 20/19 | 0.321 | 5.8 |
13/12, 24/13 | 0.324 | 5.9 |
3/2, 4/3 | 0.349 | 6.3 |
19/18, 36/19 | 0.406 | 7.3 |
5/3, 6/5 | 0.434 | 7.8 |
23/22, 44/23 | 0.463 | 8.4 |
15/11, 22/15 | 0.545 | 9.9 |
19/11, 22/19 | 0.573 | 10.4 |
17/9, 18/17 | 0.585 | 10.6 |
17/10, 20/17 | 0.669 | 12.1 |
13/9, 18/13 | 0.673 | 12.2 |
9/8, 16/9 | 0.698 | 12.6 |
21/16, 32/21 | 0.735 | 13.3 |
19/12, 24/19 | 0.755 | 13.7 |
13/10, 20/13 | 0.758 | 13.7 |
21/13, 26/21 | 0.760 | 13.7 |
5/4, 8/5 | 0.783 | 14.2 |
21/17, 34/21 | 0.849 | 15.3 |
11/10, 20/11 | 0.894 | 16.2 |
11/9, 18/11 | 0.979 | 17.7 |
19/17, 34/19 | 0.991 | 17.9 |
23/15, 30/23 | 1.008 | 18.2 |
17/15, 30/17 | 1.018 | 18.4 |
23/19, 38/23 | 1.036 | 18.7 |
19/13, 26/19 | 1.079 | 19.5 |
7/4, 8/7 | 1.084 | 19.6 |
19/16, 32/19 | 1.104 | 20.0 |
15/13, 26/15 | 1.107 | 20.0 |
13/7, 14/13 | 1.109 | 20.1 |
15/8, 16/15 | 1.132 | 20.5 |
17/14, 28/17 | 1.198 | 21.7 |
11/6, 12/11 | 1.328 | 24.0 |
23/20, 40/23 | 1.357 | 24.5 |
7/6, 12/7 | 1.433 | 25.9 |
23/18, 36/23 | 1.442 | 26.1 |
21/20, 40/21 | 1.518 | 27.4 |
17/11, 22/17 | 1.564 | 28.3 |
13/11, 22/13 | 1.652 | 29.9 |
11/8, 16/11 | 1.677 | 30.3 |
9/7, 14/9 | 1.782 | 32.2 |
23/12, 24/23 | 1.791 | 32.4 |
21/19, 38/21 | 1.839 | 33.3 |
7/5, 10/7 | 1.867 | 33.8 |
23/17, 34/23 | 2.027 | 36.6 |
23/13, 26/23 | 2.115 | 38.2 |
23/16, 32/23 | 2.140 | 38.7 |
19/14, 28/19 | 2.188 | 39.6 |
15/14, 28/15 | 2.216 | 40.1 |
23/14, 28/23 | 2.306 | 41.7 |
21/11, 22/21 | 2.412 | 43.6 |
23/21, 42/23 | 2.655 | 48.0 |
11/7, 14/11 | 2.761 | 49.9 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
13/8, 16/13 | 0.025 | 0.5 |
19/15, 30/19 | 0.028 | 0.5 |
9/5, 10/9 | 0.085 | 1.5 |
17/13, 26/17 | 0.088 | 1.6 |
17/16, 32/17 | 0.114 | 2.1 |
17/12, 24/17 | 0.235 | 4.3 |
19/10, 20/19 | 0.321 | 5.8 |
13/12, 24/13 | 0.324 | 5.9 |
3/2, 4/3 | 0.349 | 6.3 |
19/18, 36/19 | 0.406 | 7.3 |
5/3, 6/5 | 0.434 | 7.8 |
23/22, 44/23 | 0.463 | 8.4 |
15/11, 22/15 | 0.545 | 9.9 |
19/11, 22/19 | 0.573 | 10.4 |
17/9, 18/17 | 0.585 | 10.6 |
17/10, 20/17 | 0.669 | 12.1 |
13/9, 18/13 | 0.673 | 12.2 |
9/8, 16/9 | 0.698 | 12.6 |
21/16, 32/21 | 0.735 | 13.3 |
19/12, 24/19 | 0.755 | 13.7 |
13/10, 20/13 | 0.758 | 13.7 |
21/13, 26/21 | 0.760 | 13.7 |
5/4, 8/5 | 0.783 | 14.2 |
21/17, 34/21 | 0.849 | 15.3 |
11/10, 20/11 | 0.894 | 16.2 |
11/9, 18/11 | 0.979 | 17.7 |
19/17, 34/19 | 0.991 | 17.9 |
23/15, 30/23 | 1.008 | 18.2 |
17/15, 30/17 | 1.018 | 18.4 |
23/19, 38/23 | 1.036 | 18.7 |
19/13, 26/19 | 1.079 | 19.5 |
7/4, 8/7 | 1.084 | 19.6 |
19/16, 32/19 | 1.104 | 20.0 |
15/13, 26/15 | 1.107 | 20.0 |
13/7, 14/13 | 1.109 | 20.1 |
15/8, 16/15 | 1.132 | 20.5 |
17/14, 28/17 | 1.198 | 21.7 |
11/6, 12/11 | 1.328 | 24.0 |
23/20, 40/23 | 1.357 | 24.5 |
7/6, 12/7 | 1.433 | 25.9 |
23/18, 36/23 | 1.442 | 26.1 |
21/20, 40/21 | 1.518 | 27.4 |
17/11, 22/17 | 1.564 | 28.3 |
13/11, 22/13 | 1.652 | 29.9 |
11/8, 16/11 | 1.677 | 30.3 |
9/7, 14/9 | 1.782 | 32.2 |
23/12, 24/23 | 1.791 | 32.4 |
21/19, 38/21 | 1.839 | 33.3 |
7/5, 10/7 | 1.867 | 33.8 |
23/17, 34/23 | 2.027 | 36.6 |
23/13, 26/23 | 2.115 | 38.2 |
23/16, 32/23 | 2.140 | 38.7 |
19/14, 28/19 | 2.188 | 39.6 |
15/14, 28/15 | 2.216 | 40.1 |
21/11, 22/21 | 2.412 | 43.6 |
11/7, 14/11 | 2.761 | 49.9 |
23/21, 42/23 | 2.875 | 52.0 |
23/14, 28/23 | 3.224 | 58.3 |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [344 -217⟩ | [⟨217 344]] | -0.110 | 0.1101 | 1.99 |
2.3.5 | [8 14 -13⟩, [32 -7 -9⟩ | [⟨217 344 504]] | -0.186 | 0.1398 | 2.53 |
2.3.5.7 | 3136/3125, 4375/4374, 823543/819200 | [⟨217 344 504 609]] | -0.043 | 0.2757 | 4.99 |
2.3.5.7.11 | 441/440, 3136/3125, 4000/3993, 4375/4374 | [⟨217 344 504 609 751]] | -0.131 | 0.3034 | 5.49 |
2.3.5.7.11.13 | 364/363, 441/440, 676/675, 3136/3125, 4375/4374 | [⟨217 344 504 609 751 803]] | -0.111 | 0.2808 | 5.08 |
2.3.5.7.11.13.17 | 364/363, 441/440, 595/594, 676/675, 1156/1155, 3136/3125 | [⟨217 344 504 609 751 803 887]] | -0.099 | 0.2616 | 4.73 |
2.3.5.7.11.13.17.19 | 343/342, 364/363, 441/440, 476/475, 595/594, 676/675, 1216/1215 | [⟨217 344 504 609 751 803 887 922]] | -0.119 | 0.2504 | 4.53 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 3\217 | 16.59 | 100/99 | Quincy |
1 | 5\217 | 27.65 | 64/63 | Arch |
1 | 9\217 | 49.77 | 36/35 | Hemiquindromeda |
1 | 10\217 | 55.30 | 16875/16384 | Escapade |
1 | 18\217 | 99.54 | 18/17 | Quintagar / quintoneum / quinsandra |
1 | 30\217 | 165.90 | 11/10 | Satin |
1 | 33\217 | 182.49 | 10/9 | Mitonic / mineral |
1 | 57\217 | 315.21 | 6/5 | Parakleismic / paralytic |
1 | 86\217 | 475.58 | 320/243 | Vulture |
1 | 90\217 | 497.70 | 4/3 | Cotoneum |
1 | 101\217 | 558.53 | 112/81 | Condor |
7 | 94\217 (1\217) |
519.82 (5.53) |
27/20 (325/324) |
Brahmagupta |
31 | 90\217 (1\217) |
497.70 (5.53) |
4/3 (243/242) |
Birds |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct