5th-octave temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Xenllium (talk | contribs)
mNo edit summary
Line 18: Line 18:
{{Mapping|legend=1| 5 8 12 0 | 0 0 0 1 }}
{{Mapping|legend=1| 5 8 12 0 | 0 0 0 1 }}


: mapping generators: ~9/8, ~7
: Mapping generators: ~9/8, ~7


{{Multival|legend=1| 0 0 5 0 8 12 }}
{{Multival|legend=1| 0 0 5 0 8 12 }}


[[Optimal tuning]] ([[POTE]]): ~9/8 = 1\5, ~7/4 = 1017.903
[[Optimal tuning]] ([[POTE]]): ~9/8 = 1\5, ~7/4 = 1017.903


{{Optimal ET sequence|legend=1| 5, 15ccd }}
{{Optimal ET sequence|legend=1| 5, 15ccd }}
Line 29: Line 29:


== Slendrismic ==
== Slendrismic ==
{{Main| Slendrisma }}
: <small>''See also: [[No-fives subgroup temperaments #Slendrismic]] and [[Slendrisma]]''</small>


Subgroup: 2.3.7
[[Subgroup]]: 2.3.7


Comma list: 68719476736/68641485507
[[Comma list]]: 68719476736/68641485507


{{Mapping|legend=1|5 0 18|0 2 -1}}
{{Mapping|legend=1|5 0 18|0 2 -1}}
Line 48: Line 48:
{{Main| Pentonisma }}
{{Main| Pentonisma }}


Subgroup: 2.3.5.7.11.13
[[Subgroup]]: 2.3.5.7.11.13


Comma list: 281974669312/281950621875
[[Comma list]]: 281974669312/281950621875


{{mapping|legend=1|5 0 0 0 0 24|0 1 0 0 0 -1|0 0 1 0 0 -1|0 0 0 1 0 1|0 0 0 0 1 0}}
[[Mapping]]: [{{val|5 0 0 0 0 24}}, {{val|0 1 0 0 0 -1}}, {{val|0 0 1 0 0 -1}}, {{val|0 0 0 1 0 1}}, {{val|0 0 0 0 1 0}}]


: Mapping generators: ~224/195 = 1\5, ~3, ~5, ~7, ~11
: Mapping generators: ~224/195 = 1\5, ~3, ~5, ~7, ~11


Supporting ETs: {{EDOs|10, 50, 80, 120, 125, 270, 2000, 2460, 3125, 3395, 5585}}
Supporting ETs: {{Optimal ET sequence|10, 50, 80, 120, 125, 270, 2000, 2460, 3125, 3395, 5585}}

Revision as of 02:04, 2 January 2024

Template:Fractional-octave navigation 5edo is the smallest xenharmonic system, as 1edo, 2edo, 3edo and 4edo are all subsets of 12edo.

The most notable 5th-octave family is limmic temperamentstempering out 256/243 and associates 3\5 to 3/2 as well as 1\5 to 9/8, producing temperaments like blackwood. Equally notable among small equal divisions are the cloudy temperaments – identifying 8/7 with one step of 5edo.

Other families of 5-limit 5th-octave commas are:

Quint

Quint preserves the 5-limit mapping of 5edo, and the harmonic 7 is mapped to an independent generator. In what way is this useful is unexplained.

Subgroup: 2.3.5.7

Comma list: 16/15, 27/25

Mapping[5 8 12 0], 0 0 0 1]]

Mapping generators: ~9/8, ~7

Wedgie⟨⟨ 0 0 5 0 8 12 ]]

Optimal tuning (POTE): ~9/8 = 1\5, ~7/4 = 1017.903

Optimal ET sequence5, 15ccd

Badness: 0.048312

Slendrismic

See also: No-fives subgroup temperaments #Slendrismic and Slendrisma

Subgroup: 2.3.7

Comma list: 68719476736/68641485507

Mapping[5 0 18], 0 2 -1]]

Mapping generators: ~147/128 = 1\5, ~262144/151263

Optimal tuning (CTE): ~8/7 = 230.9930 (or ~1029/1024 = 9.0080)

Optimal ET sequence130, 135, 265, 400, 1065, 1465, 1865

Badness: 0.013309

Pentonismic (rank-5)

Subgroup: 2.3.5.7.11.13

Comma list: 281974669312/281950621875

Mapping: [5 0 0 0 0 24], 0 1 0 0 0 -1], 0 0 1 0 0 -1], 0 0 0 1 0 1], 0 0 0 0 1 0]]

Mapping generators: ~224/195 = 1\5, ~3, ~5, ~7, ~11

Supporting ETs: 10, 50, 80, 120, 125, 270, 2000, 2460, 3125, 3395, 5585