229edo: Difference between revisions
→Rank-2 temperaments: new temp |
Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro}} | |||
== Theory == | == Theory == | ||
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is | While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is [[consistency|distinctly consistent]] in the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[1573/1568]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably [[support|supporting]] [[hemiwürschmidt]], [[newt]], and [[trident]]. | ||
The 229b val supports a [[septimal meantone]] close to the [[CTE tuning | The 229b [[val]] supports a [[septimal meantone]] close to the [[CTE tuning]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|229|columns=11}} | {{Harmonics in equal|229|columns=11}} | ||
=== Subsets and supersets === | |||
229edo is the 50th [[prime edo]]. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal 8ve <br> | ! rowspan="2" | Optimal 8ve <br>Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 25: | Line 26: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 363 -229 }} | | {{monzo| 363 -229 }} | ||
| | | {{mapping| 229 363 }} | ||
| -0.072 | | -0.072 | ||
| 0.072 | | 0.072 | ||
Line 32: | Line 33: | ||
| 2.3.5 | | 2.3.5 | ||
| 393216/390625, {{monzo| 39 -29 3 }} | | 393216/390625, {{monzo| 39 -29 3 }} | ||
| | | {{mapping| 229 363 532 }} | ||
| -0.258 | | -0.258 | ||
| 0.269 | | 0.269 | ||
Line 39: | Line 40: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 3136/3125, 14348907/14336000 | | 2401/2400, 3136/3125, 14348907/14336000 | ||
| | | {{mapping| 229 363 532 643 }} | ||
| -0.247 | | -0.247 | ||
| 0.233 | | 0.233 | ||
Line 46: | Line 47: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 3025/3024, 3136/3125, 8019/8000 | | 2401/2400, 3025/3024, 3136/3125, 8019/8000 | ||
| | | {{mapping| 229 363 532 643 792 }} | ||
| -0.134 | | -0.134 | ||
| 0.308 | | 0.308 | ||
Line 52: | Line 53: | ||
|- | |- | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 351/350, 1573/1568, 2080/2079, 3136/3125 | | 351/350, 1573/1568, 2080/2079, 2197/2187, 3136/3125 | ||
| | | {{mapping| 229 363 532 643 792 847 }} | ||
| -0.017 | | -0.017 | ||
| 0.384 | | 0.384 | ||
Line 59: | Line 60: | ||
|- | |- | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 351/350, 442/441, 561/560, 715/714, 3136/3125 | | 351/350, 442/441, 561/560, 715/714, 2197/2187, 3136/3125 | ||
| | | {{mapping| 229 363 532 643 792 847 936 }} | ||
| -0.009 | | -0.009 | ||
| 0.356 | | 0.356 | ||
Line 67: | Line 68: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | | 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | ||
| | | {{mapping| 229 363 532 643 792 847 936 973 }} | ||
| -0.043 | | -0.043 | ||
| 0.344 | | 0.344 | ||
Line 76: | Line 77: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|16\229 | | 16\229 | ||
|83.84 | | 83.84 | ||
|16807/16000 | | 16807/16000 | ||
|[[Sextilimeans]] | | [[Sextilimeans]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 110: | Line 111: | ||
| 387.77 | | 387.77 | ||
| 5/4 | | 5/4 | ||
| [[Würschmidt]] | | [[Würschmidt]] (5-limit) | ||
|- | |- | ||
| 1 | | 1 | ||
Line 128: | Line 129: | ||
| 565.94 | | 565.94 | ||
| 18/13 | | 18/13 | ||
| [[ | | [[Trident]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
[[Category:Würschmidt]] | [[Category:Würschmidt]] | ||
[[Category:Hemiwürschmidt]] | [[Category:Hemiwürschmidt]] |
Revision as of 05:47, 2 April 2024
← 228edo | 229edo | 230edo → |
Theory
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. The equal temperament tempers out 393216/390625 (würschmidt comma) and [39 -29 3⟩ (tricot comma) in the 5-limit; 2401/2400, 3136/3125, 6144/6125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, 14641/14580 and 15488/15435 in the 11-limit, and using the patent val, 351/350, 1573/1568, 2080/2079, and 4096/4095 in the 13-limit, notably supporting hemiwürschmidt, newt, and trident.
The 229b val supports a septimal meantone close to the CTE tuning.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.23 | +1.46 | +0.61 | -1.10 | -2.10 | -0.15 | +1.18 | +0.55 | -2.50 | +2.56 |
Relative (%) | +0.0 | +4.4 | +27.8 | +11.6 | -21.0 | -40.1 | -2.9 | +22.5 | +10.4 | -47.8 | +48.9 | |
Steps (reduced) |
229 (0) |
363 (134) |
532 (74) |
643 (185) |
792 (105) |
847 (160) |
936 (20) |
973 (57) |
1036 (120) |
1112 (196) |
1135 (219) |
Subsets and supersets
229edo is the 50th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [363 -229⟩ | [⟨229 363]] | -0.072 | 0.072 | 1.38 |
2.3.5 | 393216/390625, [39 -29 3⟩ | [⟨229 363 532]] | -0.258 | 0.269 | 5.13 |
2.3.5.7 | 2401/2400, 3136/3125, 14348907/14336000 | [⟨229 363 532 643]] | -0.247 | 0.233 | 4.46 |
2.3.5.7.11 | 2401/2400, 3025/3024, 3136/3125, 8019/8000 | [⟨229 363 532 643 792]] | -0.134 | 0.308 | 5.87 |
2.3.5.7.11.13 | 351/350, 1573/1568, 2080/2079, 2197/2187, 3136/3125 | [⟨229 363 532 643 792 847]] | -0.017 | 0.384 | 7.32 |
2.3.5.7.11.13.17 | 351/350, 442/441, 561/560, 715/714, 2197/2187, 3136/3125 | [⟨229 363 532 643 792 847 936]] | -0.009 | 0.356 | 6.79 |
2.3.5.7.11.13.17.19 | 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | [⟨229 363 532 643 792 847 936 973]] | -0.043 | 0.344 | 6.57 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 16\229 | 83.84 | 16807/16000 | Sextilimeans |
1 | 19\229 | 99.56 | 18/17 | Quintagar / quinsandra / quinsandric |
1 | 37\229 | 193.87 | 28/25 | Didacus / hemiwürschmidt |
1 | 67\229 | 351.09 | 49/40 | Newt |
1 | 74\229 | 387.77 | 5/4 | Würschmidt (5-limit) |
1 | 95\229 | 497.82 | 4/3 | Gary |
1 | 75\229 | 503.06 | 147/110 | Quadrawürschmidt |
1 | 108\229 | 565.94 | 18/13 | Trident |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct