229edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Expansion: sectioning, prime error table, 19-limit interpretation, rtt tables
+infobox and expand on theory
Line 1: Line 1:
The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of 5.2402 [[cent]]s each.  
{{Infobox ET
| Prime factorization = 229 (prime)
| Step size = 5.24017¢
| Fifth = 134\229 (702.18¢)
| Semitones = 22:17 (115.28¢ : 89.08¢)
| Consistency = 11
}}
The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of about 5.24 [[cent]]s each.  


== Theory ==
== Theory ==
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably supporting [[hemiwürschmidt]], [[newt]], and [[trident]].  
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably supporting [[hemiwürschmidt]], [[newt]], and [[trident]].  
The 229b val supports a [[septimal meantone]] close to the [[CTE tuning]].


229edo is the 50th [[prime EDO]].
229edo is the 50th [[prime EDO]].

Revision as of 14:30, 24 October 2021

← 228edo 229edo 230edo →
Prime factorization 229 (prime)
Step size 5.24017 ¢ 
Fifth 134\229 (702.183 ¢)
Semitones (A1:m2) 22:17 (115.3 ¢ : 89.08 ¢)
Consistency limit 11
Distinct consistency limit 11

The 229 equal divisions of the octave (229edo), or the 229(-tone) equal temperament (229tet, 229et), is the equal division of the octave into 229 parts of about 5.24 cents each.

Theory

While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out 393216/390625 (würschmidt comma) and [39 -29 3 (tricot comma) in the 5-limit; 2401/2400, 3136/3125, 6144/6125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, 14641/14580 and 15488/15435 in the 11-limit, and using the patent val, 351/350, 2080/2079, and 4096/4095 in the 13-limit, notably supporting hemiwürschmidt, newt, and trident.

The 229b val supports a septimal meantone close to the CTE tuning.

229edo is the 50th prime EDO.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [363 -229 [229 363]] -0.072 0.072 1.38
2.3.5 393216/390625, [39 -29 3 [229 363 532]] -0.258 0.269 5.13
2.3.5.7 2401/2400, 3136/3125, 14348907/14336000 [229 363 532 643]] -0.247 0.233 4.46
2.3.5.7.11 2401/2400, 3025/3024, 3136/3125, 8019/8000 [229 363 532 643 792]] -0.134 0.308 5.87
2.3.5.7.11.13 351/350, 2080/2079, 3025/3024, 3136/3125, 4096/4095 [229 363 532 643 792 847]] -0.017 0.384 7.32
2.3.5.7.11.13.17 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095 [229 363 532 643 792 847 936]] -0.009 0.356 6.79
2.3.5.7.11.13.17.19 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 [229 363 532 643 792 847 936 973]] -0.043 0.344 6.57

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 19\229 99.56 18/17 Quintagar / quintasandra / quintasandroid
1 37\229 193.87 28/25 Didacus / hemiwürschmidt
1 67\229 351.09 49/40 Newt
1 74\229 387.77 5/4 Würschmidt
1 95\229 497.82 4/3 Gary
1 75\229 503.06 147/110 Quadrawürschmidt
1 108\229 565.94 18/13 Tricot / trident