25edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''25EDF''' is the equal division of the just perfect fifth into 25 parts of 28.0782 cents each, corresponding to 42.7378 edo (similar to every fourth ste..." |
No edit summary |
||
Line 12: | Line 12: | ||
|- | |- | ||
| | 0 | | | 0 | ||
| | | | | 0 | ||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 18: | Line 18: | ||
| | 1 | | | 1 | ||
| | 28.0782 | | | 28.0782 | ||
| | | | |51/50 | ||
| | | | | | ||
|- | |- | ||
| | 2 | | | 2 | ||
| | 56.1564 | | | 56.1564 | ||
| | | | |26/25 | ||
| | | | | | ||
|- | |- | ||
Line 37: | Line 37: | ||
|- | |- | ||
| | 5 | | | 5 | ||
| | 140. | | | 140.391 | ||
| | | | |13/12 | ||
| | | | | | ||
|- | |- | ||
Line 53: | Line 53: | ||
| | 8 | | | 8 | ||
| | 224.6256 | | | 224.6256 | ||
| | | | |8/7 | ||
| | | | | | ||
|- | |- | ||
Line 62: | Line 62: | ||
|- | |- | ||
| | 10 | | | 10 | ||
| | 280. | | | 280.782 | ||
| | [[20/17]] | | | [[20/17]] | ||
| | | | | | ||
Line 87: | Line 87: | ||
|- | |- | ||
| | 15 | | | 15 | ||
| | 421. | | | 421.173 | ||
| | 51/40 | | | 51/40 | ||
| | | | | | ||
Line 112: | Line 112: | ||
|- | |- | ||
| | 20 | | | 20 | ||
| | 561. | | | 561.564 | ||
| | | | | | ||
| | | | | | ||
Line 137: | Line 137: | ||
|- | |- | ||
| | 25 | | | 25 | ||
| | 701. | | | 701.955 | ||
| | '''exact [[3/2]]''' | | | '''exact [[3/2]]''' | ||
| | just perfect fifth | | | just perfect fifth | ||
|- | |||
|26 | |||
|730.033 | |||
|153/100 | |||
| | |||
|- | |||
|27 | |||
|757.1114 | |||
|39/25 | |||
| | |||
|- | |||
|28 | |||
|786.1896 | |||
|63/40 | |||
| | |||
|- | |||
|29 | |||
|814.2678 | |||
|8/5 | |||
| | |||
|- | |||
|30 | |||
|842.346 | |||
|13/8 | |||
| | |||
|- | |||
|31 | |||
|870.2452 | |||
| | |||
| | |||
|- | |||
|32 | |||
|898.5024 | |||
|42/25 | |||
| | |||
|- | |||
|33 | |||
|926.5806 | |||
|12/7 | |||
| | |||
|- | |||
|34 | |||
|954.6588 | |||
| | |||
| | |||
|- | |||
|35 | |||
|982.737 | |||
|30/17 | |||
| | |||
|- | |||
|36 | |||
|1010.8152 | |||
| | |||
|pseudo-9/5 | |||
|- | |||
|37 | |||
|1038.8934 | |||
| | |||
| | |||
|- | |||
|38 | |||
|1066.9716 | |||
| | |||
| | |||
|- | |||
|39 | |||
|1095.0498 | |||
| | |||
|pseudo-15/8 | |||
|- | |||
|40 | |||
|1123.128 | |||
|153/80 | |||
| | |||
|- | |||
|41 | |||
|1151.2062 | |||
| | |||
| | |||
|- | |||
|42 | |||
|1179.2844 | |||
| | |||
| | |||
|- | |||
|43 | |||
|1207.3526 | |||
|225/112 | |||
|pseudo-2/1 | |||
|- | |||
|44 | |||
|1235.4408 | |||
| | |||
| | |||
|- | |||
|45 | |||
|1263.519 | |||
| | |||
| | |||
|- | |||
|46 | |||
|1291.5972 | |||
|135/64 | |||
| | |||
|- | |||
|47 | |||
|1319.6754 | |||
|15/7 | |||
| | |||
|- | |||
|48 | |||
|1347.7536 | |||
| | |||
| | |||
|- | |||
|49 | |||
|1375.8318 | |||
| | |||
| | |||
|- | |||
|50 | |||
|1403.91 | |||
|'''exact''' 9/4 | |||
| | |||
|} | |} | ||
[[Category:Edf]] | [[Category:Edf]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |
Revision as of 18:48, 9 March 2019
25EDF is the equal division of the just perfect fifth into 25 parts of 28.0782 cents each, corresponding to 42.7378 edo (similar to every fourth step of 171edo). It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by 43edo, 128edo, 171edo, 214edo, 299edo, and 385edo.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0 | exact 1/1 | |
1 | 28.0782 | 51/50 | |
2 | 56.1564 | 26/25 | |
3 | 84.2346 | 21/20 | |
4 | 112.3128 | 16/15 | |
5 | 140.391 | 13/12 | |
6 | 168.4692 | ||
7 | 196.5474 | 28/25 | |
8 | 224.6256 | 8/7 | |
9 | 252.7038 | ||
10 | 280.782 | 20/17 | |
11 | 308.8602 | pseudo-6/5 | |
12 | 336.9384 | ||
13 | 365.0166 | ||
14 | 393.0948 | pseudo-5/4 | |
15 | 421.173 | 51/40 | |
16 | 449.2512 | ||
17 | 477.3294 | ||
18 | 505.4076 | 75/56 | pseudo-4/3 |
19 | 533.4858 | ||
20 | 561.564 | ||
21 | 589.6422 | 45/32 | |
22 | 617.7204 | 10/7 | |
23 | 645.7986 | ||
24 | 673.8768 | ||
25 | 701.955 | exact 3/2 | just perfect fifth |
26 | 730.033 | 153/100 | |
27 | 757.1114 | 39/25 | |
28 | 786.1896 | 63/40 | |
29 | 814.2678 | 8/5 | |
30 | 842.346 | 13/8 | |
31 | 870.2452 | ||
32 | 898.5024 | 42/25 | |
33 | 926.5806 | 12/7 | |
34 | 954.6588 | ||
35 | 982.737 | 30/17 | |
36 | 1010.8152 | pseudo-9/5 | |
37 | 1038.8934 | ||
38 | 1066.9716 | ||
39 | 1095.0498 | pseudo-15/8 | |
40 | 1123.128 | 153/80 | |
41 | 1151.2062 | ||
42 | 1179.2844 | ||
43 | 1207.3526 | 225/112 | pseudo-2/1 |
44 | 1235.4408 | ||
45 | 1263.519 | ||
46 | 1291.5972 | 135/64 | |
47 | 1319.6754 | 15/7 | |
48 | 1347.7536 | ||
49 | 1375.8318 | ||
50 | 1403.91 | exact 9/4 |