176edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Regular temperament properties: cleanup and update
m Theory: update
Line 5: Line 5:
176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]] and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit.  
176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]] and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit.  


176edo tempers the [[64/63|Archytas' comma]] to 1/44th of the octave (4 steps) and as a corollary supports the [[ruthenium]] temperament. It [[support]]s the [[bison]] temperament and the [[commatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.  
176edo tempers the [[64/63|Archytas' comma]] to 1/44th of the octave (4 steps) and as a corollary supports the [[ruthenium]] temperament. It [[support]]s the [[bison]] temperament and the [[bicommatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
Line 11: Line 11:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 176 factors into {{factorization|176}}, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 16, 22, 44, and 88 }}.
Since 176 factors into 2<sup>4</sup> × 11, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 16, 22, 44, and 88 }}.


== Regular temperament properties ==
== Regular temperament properties ==

Revision as of 13:38, 13 January 2025

← 175edo 176edo 177edo →
Prime factorization 24 × 11
Step size 6.81818 ¢ 
Fifth 103\176 (702.273 ¢)
Semitones (A1:m2) 17:13 (115.9 ¢ : 88.64 ¢)
Consistency limit 11
Distinct consistency limit 11

The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of about 6.82 cents each, a size close to 243/242, the rastma.

Theory

176edo is consistent to the 11-odd-limit. The equal temperament tempers out 78732/78125 (sensipent comma) and [41 -20 -4 (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000, 9801/9800 and 16384/16335 in the 11-limit. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.

176edo tempers the Archytas' comma to 1/44th of the octave (4 steps) and as a corollary supports the ruthenium temperament. It supports the bison temperament and the bicommatic temperament, and provides the optimal patent val for countermiracle in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.

Prime harmonics

Approximation of prime harmonics in 176edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.32 +2.32 -0.64 +0.95 -1.89 -2.68 +2.49 -1.00 -0.03 +0.42
Relative (%) +0.0 +4.7 +34.1 -9.4 +14.0 -27.7 -39.3 +36.5 -14.7 -0.5 +6.1
Steps
(reduced)
176
(0)
279
(103)
409
(57)
494
(142)
609
(81)
651
(123)
719
(15)
748
(44)
796
(92)
855
(151)
872
(168)

Subsets and supersets

Since 176 factors into 24 × 11, 176edo has subset edos 2, 4, 8, 11, 16, 22, 44, and 88.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [279 -176 [176 279]] −0.100 0.100 1.47
2.3.5 78732/78125, [41 -20 -4 [176 279 409]] −0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [176 279 409 494]] −0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [176 279 409 494 609]] −0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [176 279 409 494 609 651]] −0.123 0.473 6.93

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 17\176 115.91 77/72 Mercy / countermiracle / counterbenediction / countermanna
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Bicommatic
2 23\176 156.82 35/32 Bison
4 73\176
(15\176)
497.73
(102.27)
4/3
(35/33)
Undim
8 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Twilight
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f) / octowerckis (176)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic / major arcana

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct