65edt: Difference between revisions
Jump to navigation
Jump to search
m Headings and stuff |
Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
==Intervals== | == Theory == | ||
{| class="wikitable" | 65edt is almost identical to [[41edo]], but with the 3/1 rather than the [[2/1]] being just. The octave is about 0.3053 cents compressed. Like 41edo, 65edt is [[consistent]] to the [[integer limit|16-integer-limit]]. | ||
=== Harmonics === | |||
{{Harmonics in equal|65|3|1|intervals=integer}} | |||
{{Harmonics in equal|65|3|1|intervals=integer|columns=12|start=12|collapsed=true|Approximation of harmonics in 65edt (continued)}} | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 right-3" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! Hekts | ! Hekts | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| | | | 0.0 | ||
| 0.0 | |||
| 1/1 | |||
|- | |- | ||
| 1 | |||
| 29.3 | |||
|20 | | 20.0 | ||
| | | [[49/48]], [[50/49]], [[64/63]], [[81/80]] | ||
|- | |- | ||
| 2 | |||
| 58.5 | |||
|40 | | 40.0 | ||
| | | [[25/24]], [[28/27]], [[33/32]], [[36/35]] | ||
|- | |- | ||
| 3 | |||
| 87.8 | |||
|60 | | 60.0 | ||
| | | [[19/18]], [[20/19]], [[21/20]], [[22/21]] | ||
|- | |- | ||
| 4 | |||
| 117.0 | |||
|80 | | 80.0 | ||
| | | [[14/13]], [[15/14]], [[16/15]] | ||
|- | |- | ||
| 5 | |||
| 146.3 | |||
|100 | | 100.0 | ||
| | | [[12/11]], [[13/12]] | ||
|- | |- | ||
| 6 | |||
| 175.6 | |||
|120 | | 120.0 | ||
| [[10/9]], [[11/10]], [[21/19]] | |||
|- | |- | ||
| 7 | |||
| 204.8 | |||
|140 | | 140.0 | ||
| [[9/8]] | |||
|- | |- | ||
| 8 | |||
| 234.1 | |||
|160 | | 160.0 | ||
| [[8/7]], [[15/13]] | |||
|- | |- | ||
| 9 | |||
| 263.3 | |||
|180 | | 180.0 | ||
| [[7/6]], [[22/19]] | |||
|- | |- | ||
| 10 | |||
| 292.6 | |||
|200 | | 200.0 | ||
| | | [[13/11]], [[19/16]], [[32/27]] | ||
|- | |- | ||
| 11 | |||
| 321.9 | |||
|220 | | 220.0 | ||
| | | [[6/5]] | ||
|- | |- | ||
| 12 | |||
| 351.1 | |||
|240 | | 240.0 | ||
| [[11/9]], [[16/13]] | |||
|- | |- | ||
| 13 | |||
| 380.4 | |||
|260 | | 260.0 | ||
| | | [[5/4]], [[26/21]] | ||
|- | |- | ||
| 14 | |||
| 409.7 | |||
|280 | | 280.0 | ||
| | | [[14/11]], [[19/15]], [[24/19]] | ||
|- | |- | ||
| 15 | |||
| 438.9 | |||
|300 | | 300.0 | ||
| [[9/7]], [[32/25]] | |||
|- | |- | ||
| 16 | |||
| 468.2 | |||
|320 | | 320.0 | ||
| [[21/16]], [[13/10]] | |||
|- | |- | ||
| 17 | |||
| 497.4 | |||
|340 | | 340.0 | ||
| [[4/3]] | |||
|- | |- | ||
| 18 | |||
| 526.7 | |||
|360 | | 360.0 | ||
| | | [[15/11]], [[19/14]], [[27/20]] | ||
|- | |- | ||
| 19 | |||
| | | 556.0 | ||
|380 | | 380.0 | ||
| | | [[11/8]], [[18/13]], [[26/19]] | ||
|- | |- | ||
| 20 | |||
| 585.2 | |||
|400 | | 400.0 | ||
| [[7/5]], [[45/32]] | |||
|- | |- | ||
| 21 | |||
| 614.5 | |||
|420 | | 420.0 | ||
| [[10/7]], [[64/45]] | |||
|- | |- | ||
| 22 | |||
| 643.7 | |||
|440 | | 440.0 | ||
| | | [[13/9]], [[16/11]], [[19/13]] | ||
|- | |- | ||
| 23 | |||
| | | 673.0 | ||
|460 | | 460.0 | ||
| | | [[22/15]], [[28/19]], [[40/27]] | ||
|- | |- | ||
| 24 | |||
| 702.3 | |||
|480 | | 480.0 | ||
| [[3/2]] | |||
|- | |- | ||
| 25 | |||
| 731.5 | |||
|500 | | 500.0 | ||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
| 26 | |||
| 760.8 | |||
|520 | | 520.0 | ||
| | | [[14/9]], [[25/16]] | ||
|- | |- | ||
| 27 | |||
| 790.0 | |||
|540 | | 540.0 | ||
| | | [[11/7]], [[19/12]], [[30/19]] | ||
|- | |- | ||
| 28 | |||
| 819.3 | |||
|560 | | 560.0 | ||
| | | [[8/5]], [[21/13]] | ||
|- | |- | ||
| 29 | |||
| 848.6 | |||
|580 | | 580.0 | ||
| | | [[13/8]], [[18/11]] | ||
|- | |- | ||
| 30 | |||
| 877.8 | |||
|600 | | 600.0 | ||
| | | [[5/3]] | ||
|- | |- | ||
| 31 | |||
| 907.1 | |||
|620 | | 620.0 | ||
| | | [[22/13]], [[27/16]], [[32/19]] | ||
|- | |- | ||
| 32 | |||
| 936.3 | |||
|640 | | 640.0 | ||
| [[12/7]], [[19/11]] | |||
|- | |- | ||
| 33 | |||
| 965.6 | |||
|660 | | 660.0 | ||
| [[7/4]], [[26/15]] | |||
|- | |- | ||
| 34 | |||
| 994.9 | |||
|680 | | 680.0 | ||
| [[16/9]] | |||
|- | |- | ||
| 35 | |||
| 1024.1 | |||
|700 | | 700.0 | ||
| | | [[9/5]] | ||
|- | |- | ||
| 36 | |||
| 1053.4 | |||
|720 | | 720.0 | ||
| [[11/6]] | |||
|- | |- | ||
| 37 | |||
| 1082.7 | |||
|740 | | 740.0 | ||
| [[13/7]], [[15/8]] | |||
|- | |- | ||
| 38 | |||
| 1111.9 | |||
|760 | | 760.0 | ||
| [[19/10]], [[21/11]] | |||
|- | |- | ||
| 39 | |||
| 1141.2 | |||
|780 | | 780.0 | ||
| | | [[27/14]], [[35/18]] | ||
|- | |- | ||
| 40 | |||
| 1170.4 | |||
|800 | | 800.0 | ||
| | | [[55/28]], [[63/32]] | ||
|- | |- | ||
| 41 | |||
| 1199.7 | |||
|820 | | 820.0 | ||
| [[2/1]] | |||
|- | |- | ||
| 42 | |||
| | | 1229.0 | ||
|840 | | 840.0 | ||
| | | [[49/24]], [[81/40]] | ||
|- | |- | ||
| 43 | |||
| 1258.2 | |||
|860 | | 860.0 | ||
| | | [[25/12]], [[33/16]] | ||
|- | |- | ||
| 44 | |||
| 1287.5 | |||
|880 | | 880.0 | ||
| | | [[19/9]], [[21/10]] | ||
|- | |- | ||
| 45 | |||
| 1316.7 | |||
|900 | | 900.0 | ||
| [[15/7]] | |||
|- | |- | ||
| 46 | |||
| | | 1346.0 | ||
|920 | | 920.0 | ||
| | | [[13/6]] | ||
|- | |- | ||
| 47 | |||
| 1375.3 | |||
|940 | | 940.0 | ||
| | | [[11/5]] | ||
|- | |- | ||
| 48 | |||
| 1404.5 | |||
|960 | | 960.0 | ||
| [[9/4]] | |||
|- | |- | ||
| 49 | |||
| 1433.8 | |||
|980 | | 980.0 | ||
| [[16/7]] | |||
|- | |- | ||
| 50 | |||
| 1463.0 | |||
|1000 | | 1000.0 | ||
| [[7/3]] | |||
|- | |- | ||
| 51 | |||
| 1492.3 | |||
|1020 | | 1020.0 | ||
| | | [[19/8]] | ||
|- | |- | ||
| 52 | |||
| 1521.6 | |||
|1040 | | 1040.0 | ||
| | | [[12/5]] | ||
|- | |- | ||
| 53 | |||
| 1550.8 | |||
|1060 | | 1060.0 | ||
| | | [[22/9]], [[27/11]] | ||
|- | |- | ||
| 54 | |||
| 1580.1 | |||
|1080 | | 1080.0 | ||
| | | [[5/2]] | ||
|- | |- | ||
| 55 | |||
| 1609.3 | |||
|1100 | | 1100.0 | ||
| | | [[28/11]], [[33/13]] | ||
|- | |- | ||
| 56 | |||
| 1638.6 | |||
|1120 | | 1120.0 | ||
| | | [[18/7]] | ||
|- | |- | ||
| 57 | |||
| 1667.9 | |||
|1140 | | 1140.0 | ||
| | | [[21/8]] | ||
|- | |- | ||
| 58 | |||
| 1697.1 | |||
|1160 | | 1160.0 | ||
| [[8/3]] | |||
|- | |- | ||
| 59 | |||
| 1726.4 | |||
|1180 | | 1180.0 | ||
| | | [[19/7]] | ||
|- | |- | ||
| 60 | |||
| 1755.7 | |||
|1200 | | 1200.0 | ||
| [[11/4]] | |||
|- | |- | ||
| 61 | |||
| 1784.9 | |||
|1220 | | 1220.0 | ||
| [[14/5]] | |||
|- | |- | ||
| 62 | |||
| 1814.2 | |||
|1240 | | 1240.0 | ||
| | | [[20/7]] | ||
|- | |- | ||
| 63 | |||
| 1843.4 | |||
|1260 | | 1260.0 | ||
| | | [[26/9]] | ||
|- | |- | ||
| 64 | |||
| 1872.7 | |||
|1280 | | 1280.0 | ||
| | | [[27/10]] | ||
|- | |- | ||
| 65 | |||
| | | 1902.0 | ||
|1300 | | 1300.0 | ||
| | | [[3/1]] | ||
|} | |} | ||
Revision as of 16:24, 20 March 2025
← 64edt | 65edt | 66edt → |
(convergent)
65 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 65edt or 65ed3), is a nonoctave tuning system that divides the interval of 3/1 into 65 equal parts of about 29.3 ¢ each. Each step represents a frequency ratio of 31/65, or the 65th root of 3.
Theory
65edt is almost identical to 41edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.3053 cents compressed. Like 41edo, 65edt is consistent to the 16-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.3 | +0.0 | -0.6 | -6.5 | -0.3 | -3.8 | -0.9 | +0.0 | -6.8 | +3.7 | -0.6 |
Relative (%) | -1.0 | +0.0 | -2.1 | -22.3 | -1.0 | -13.1 | -3.1 | +0.0 | -23.4 | +12.7 | -2.1 | |
Steps (reduced) |
41 (41) |
65 (0) |
82 (17) |
95 (30) |
106 (41) |
115 (50) |
123 (58) |
130 (0) |
136 (6) |
142 (12) |
147 (17) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.1 | -4.1 | -6.5 | -1.2 | +10.9 | -0.3 | -6.1 | -7.1 | -3.8 | +3.4 | +14.2 | -0.9 |
Relative (%) | +24.3 | -14.1 | -22.3 | -4.2 | +37.1 | -1.0 | -20.9 | -24.4 | -13.1 | +11.7 | +48.7 | -3.1 | |
Steps (reduced) |
152 (22) |
156 (26) |
160 (30) |
164 (34) |
168 (38) |
171 (41) |
174 (44) |
177 (47) |
180 (50) |
183 (53) |
186 (56) |
188 (58) |
Intervals
# | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0.0 | 0.0 | 1/1 |
1 | 29.3 | 20.0 | 49/48, 50/49, 64/63, 81/80 |
2 | 58.5 | 40.0 | 25/24, 28/27, 33/32, 36/35 |
3 | 87.8 | 60.0 | 19/18, 20/19, 21/20, 22/21 |
4 | 117.0 | 80.0 | 14/13, 15/14, 16/15 |
5 | 146.3 | 100.0 | 12/11, 13/12 |
6 | 175.6 | 120.0 | 10/9, 11/10, 21/19 |
7 | 204.8 | 140.0 | 9/8 |
8 | 234.1 | 160.0 | 8/7, 15/13 |
9 | 263.3 | 180.0 | 7/6, 22/19 |
10 | 292.6 | 200.0 | 13/11, 19/16, 32/27 |
11 | 321.9 | 220.0 | 6/5 |
12 | 351.1 | 240.0 | 11/9, 16/13 |
13 | 380.4 | 260.0 | 5/4, 26/21 |
14 | 409.7 | 280.0 | 14/11, 19/15, 24/19 |
15 | 438.9 | 300.0 | 9/7, 32/25 |
16 | 468.2 | 320.0 | 21/16, 13/10 |
17 | 497.4 | 340.0 | 4/3 |
18 | 526.7 | 360.0 | 15/11, 19/14, 27/20 |
19 | 556.0 | 380.0 | 11/8, 18/13, 26/19 |
20 | 585.2 | 400.0 | 7/5, 45/32 |
21 | 614.5 | 420.0 | 10/7, 64/45 |
22 | 643.7 | 440.0 | 13/9, 16/11, 19/13 |
23 | 673.0 | 460.0 | 22/15, 28/19, 40/27 |
24 | 702.3 | 480.0 | 3/2 |
25 | 731.5 | 500.0 | 20/13, 32/21 |
26 | 760.8 | 520.0 | 14/9, 25/16 |
27 | 790.0 | 540.0 | 11/7, 19/12, 30/19 |
28 | 819.3 | 560.0 | 8/5, 21/13 |
29 | 848.6 | 580.0 | 13/8, 18/11 |
30 | 877.8 | 600.0 | 5/3 |
31 | 907.1 | 620.0 | 22/13, 27/16, 32/19 |
32 | 936.3 | 640.0 | 12/7, 19/11 |
33 | 965.6 | 660.0 | 7/4, 26/15 |
34 | 994.9 | 680.0 | 16/9 |
35 | 1024.1 | 700.0 | 9/5 |
36 | 1053.4 | 720.0 | 11/6 |
37 | 1082.7 | 740.0 | 13/7, 15/8 |
38 | 1111.9 | 760.0 | 19/10, 21/11 |
39 | 1141.2 | 780.0 | 27/14, 35/18 |
40 | 1170.4 | 800.0 | 55/28, 63/32 |
41 | 1199.7 | 820.0 | 2/1 |
42 | 1229.0 | 840.0 | 49/24, 81/40 |
43 | 1258.2 | 860.0 | 25/12, 33/16 |
44 | 1287.5 | 880.0 | 19/9, 21/10 |
45 | 1316.7 | 900.0 | 15/7 |
46 | 1346.0 | 920.0 | 13/6 |
47 | 1375.3 | 940.0 | 11/5 |
48 | 1404.5 | 960.0 | 9/4 |
49 | 1433.8 | 980.0 | 16/7 |
50 | 1463.0 | 1000.0 | 7/3 |
51 | 1492.3 | 1020.0 | 19/8 |
52 | 1521.6 | 1040.0 | 12/5 |
53 | 1550.8 | 1060.0 | 22/9, 27/11 |
54 | 1580.1 | 1080.0 | 5/2 |
55 | 1609.3 | 1100.0 | 28/11, 33/13 |
56 | 1638.6 | 1120.0 | 18/7 |
57 | 1667.9 | 1140.0 | 21/8 |
58 | 1697.1 | 1160.0 | 8/3 |
59 | 1726.4 | 1180.0 | 19/7 |
60 | 1755.7 | 1200.0 | 11/4 |
61 | 1784.9 | 1220.0 | 14/5 |
62 | 1814.2 | 1240.0 | 20/7 |
63 | 1843.4 | 1260.0 | 26/9 |
64 | 1872.7 | 1280.0 | 27/10 |
65 | 1902.0 | 1300.0 | 3/1 |